Фолдинг белков. Ферменты

Аминокислотная последовательность не является единственным фактором, определяющим форму белковой молекулы. В клетке существуют специальные молекулы, которые активно участвуют в фолдинге белков.

В совокупности молекулы, участвующие в фолдинге белков, называют регуляторами фолдинга, среди которых выделяют несколько типов. Молекулы, ускоряющие фолдинг, называются катализаторами фолдинга . Молекулы, служащие для изменения формы белка, - шаперонами фолдинга . Существует четыре типа молекул, которые играют роль таких шаперонов .

1. Молекулы, обеспечивающие правильный фолдинг белков (фолдинг-шапероны - folding chaperones).

2. Молекулы, созданные для удержания частично свернутой молекулы белка в определенном положении. Это необходимо, чтобы система имела возможность закончить фолдинг (удерживающие шапероны - holding chaperones).

3. Шапероны, разворачивающие белки с неправильной формой (дезагрегирующие шапероны - disaggregating chaperones).

4. Шапероны, сопровождающие белки, транспортируемые через клеточную мембрану (секреторные шапероны - secretory chaperons).

Фолдинг шапероны помогают белку принять правильную конформацию. Многие из них являются небольшими сахарами или пептидами. Представьте себе сборочную линию на производстве. Пока изделие перемещается по сборочной линии, вы можете вставлять в него некоторые временные приспособления, например скобы и заклепки, чтобы поддерживать определенную форму на протяжении нескольких этапов сборки. По окончании этих этапов удерживающие устройства можно удалить. На следующих этапах сборки вам могут понадобиться дополнительные удерживающие приспособления, которые будут удалены на выходе готового изделия. Небольшие по размеру молекулы фолдинг-шаперонов выступают в роли скоб и заклепок в сборочной линии, поддерживая изделие в правильной конфигурации, необходимой для завершения следующего этапа. Если белки приняли неправильную форму, они не будут выполнять свойственную им функцию или же будут накапливаться в виде нерастворимых агрегатов, известных под названием включений.

Внутри клетки содержится большое количество воды. Молекулы, находящиеся в ней, обычно заряжены, то есть являются гидрофильными. Незаряженные молекулы, как мы помним, гидрофобны. В длинной, линейной последовательности белка имеются гидрофильные участки, а также гидрофобные области. В водной среде клетки гидрофобные поверхности белка стремятся оказаться внутри белковой молекулы, выставляя гидрофильные участки наружу, где они могут взаимодействовать с молекулами воды. Функция небольших молекул фолдинг-шаперонов заключается во взаимодействии с гидрофобными поверхностями белка, заряжая их или, напротив, прикрывая заряженные области, что позволяет белку принять правильную форму. Путем добавления и удаления этих молекул клетка определяет, когда и каким образом гидрофобный участок белка окажется внутри белковой молекулы. Тем самым определяется форма белка (рис. 8.6).

Рис. 8.6. Влияние шаперонов

Удерживающие шапероны связываются с белками, играя роль своеобразного резервуара этих белков до тех пор, пока фолдинг-шапероны не освобождаются и не начинают работу с этими белками. Удерживающие шапероны поддерживают белки в условиях химического и теплового напряжения до тех пор, пока условия внутри клетки не станут более благоприятными для правильного фолдинга белка. Это один из механизмов, который использует клетка для предотвращения неправильного фолдинга. Другой механизм связан с функционированием дезагрегирующих шаперонов. Дезагрегирующие шапероны осуществляют рефолдинг белков, фолдинг которых был выполнен неправильно. Они осуществляют в клетке важную контролирующую функцию по сбору и утилизации вторичного сырья. Несмотря на существование этих механизмов, определенный процент клеточных белков все же попадает в мусорную кучу, то есть образует нерастворимые включения. Включения видны в клетке в виде небольших плотных скоплений.

Одна из характерных черт шаперонов, которую вы нашли бы особенно важной, заключается в том, что они являются относительно неспецифичными. Иными словами, молекула шаперона будет осуществлять фолдинг более чем одного белка. Исследователи, изучающие причины неправильного фолдинга белков, случайно обнаружили в поврежденных клетках молекулы, сходные по структуре с шаперонами. Они нашли молекулы, которые исправляют последствия неправильного фолдинга белков. Исходя из универсальной природы шаперонов, вы можете вводить различные шапероны в биоинженерную систему и влиять на правильный фолдинг белка в среде, где он бы иначе не происходил. Создание специализированных шаперонов, ответственных за фолдинг рекомбинантных (биоинженерных) белков, - очень активно развивающаяся область биоинженерных исследований.

Белок можно подвергнуть фолдингу более одного раза. Представим себе белок, который предназначен для поступления в клеточную мембрану, то есть представляет собой интегральный мембранный белок. Белок образуется в цитоплазме клетки, а затем транспортируется по направлению к плазматической мембране. Такие белки проходят сквозь мембрану, закрепляются в ней и формируют на ее поверхности рецепторную структуру. Для транспорта белка может быть необходима одна его конформация, в то время как непосредственно перед встраиванием в мембрану белок подвергается рефолдингу.

В периплазматическом пространстве, то есть в пространстве между мембраной и оболочкой бактериальной клетки, находятся шапероны, обеспечивающие фолдинг и встраивание в мембрану интегральных мембранных белков. В эукариотических клетках большинство из посттрансляционных изменений белков направлено на их экспорт и встраивание внутрь плазматической мембраны. Такие модификации белков происходят в люмене эндоплазматического ретикулума и аппарате Гольджи. Эти органеллы предназначены для хранения и видоизменения белков.

В секреции белков из клетки участвует другая контролирующая система, которая включает секреторные шапероны . Секреторные шапероны узнают сигнальную последовательность аминокислот, которую соответственно называют секреторной последовательностью. Эта последовательность связывается с секреторным шапероном, шаперон поступает внутрь мембраны, обеспечивая экспорт белка вместе с собой.

  • 2. Методы очистки белков
  • 3. Очистка белков от низкомолекулярных примесей
  • 11.Конформационная лабильность белков. Денатурация, признаки и факторы ее вызывающие. Защита от денатурации специализированными белками теплового шока (шаперонами).
  • 12. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 13. Иммуноглобулины, классы иммуноглобулинов, особенности строения и функционирования.
  • 14. Ферменты, определение. Особенности ферментативного катализа. Специфичность действия ферментов, виды. Классификация и номенклатура ферментов, примеры.
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • V. Механизм действия ферментов
  • 1. Формирование фермент-субстратного комплекса
  • 3. Роль активного центра в ферментативном катализе
  • 1. Кислотно-основной катализ
  • 2. Ковалентный катализ
  • 16. Кинетика ферментативных реакций. Зависимость скорости ферментативных реакций от температуры, рН среды, концентрации фермента и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 17. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр и в2 на примере трансаминаз и дегидрогеназ.
  • 1. Роль металлов в присоединении субстрата в активном центре фермента
  • 2. Роль металлов в стабилизации третичной и четвертичной структуры фермента
  • 3. Роль металлов в ферментативном катализе
  • 4. Роль металлов в регуляции активности ферментов
  • 1. Механизм "пинг-понг"
  • 2. Последовательный механизм
  • 18. Ингибирование ферментов: обратимое и необратимое; конкурентное и неконкурентное. Лекарственные препараты как ингибиторы ферментов.
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 1. Специфические и неспецифические ингибиторы
  • 2. Необратимые ингибиторы ферментов как лекарственные препараты
  • 20. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 21. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции каталитической активности ферментов.
  • 22. Изоферменты, их происхождение, биологическое значение, привести примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики болезней.
  • 23. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 24. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротацидурия.
  • 25. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Азотистые основания, входящие в структуру нуклеиновых кислот – пуриновые и пиримидиновые. Нуклеотиды, содержащие рибозу и дезоксирибозу. Структура. Номенклатура.
  • 28. Первичная структура нуклеиновых кислот. Днк и рнк–черты сходства и различия состава, локализации в клетке, функции.
  • 29. Вторичная структура днк (модель Уотсона и Крика). Связи, стабилизирующие вторичную структуру днк. Комплементарность. Правило Чаргаффа. Полярность. Антипараллельность.
  • 30. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 32. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 33. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 34. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 35. Транскрипция Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц (α2ββ′δ). Инициация процесса. Элонгация, терминация транскрипции.
  • 36. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 37. Регуляция транскрипции у прокариот. Теория оперона, регуляция по типу индукции и репрессии (примеры).
  • 1. Теория оперона
  • 2. Индукция синтеза белков. Lac-оперон
  • 3. Репрессия синтеза белков. Триптофановый и гистидиновый опероны
  • 39. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 41. Фолдинг белков. Ферменты. Роль шаперонов в фолдинге белка. Фолдинг белковой молекулы с помощью шаперониновой системы. Болезни, связанные с нарушением фолдинга белка – прионовые болезни.
  • 42. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 43. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 44. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 45. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 1. Образование и роль соляной кислоты
  • 2.Механизм активации пепсина
  • 3.Возрастные особенности переваривания белков в желудке
  • 1. Активация панкреатических ферментов
  • 2. Специфичность действия протеаз
  • 47. Витамины. Классификация, номенклатура. Провитамины. Гипо-, гипер- и авитаминозы, причины возникновения. Витаминзависимые и витаминрезистентные состояния.
  • 48. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 3. Жидкостностъ мембран
  • 1. Структура и свойства липидов мембран
  • 51. Механизмы переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • Мембранные рецепторы
  • 3.Эндергонические и экзергонические реакции
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Строение атф-синтазы и синтез атф
  • 3.Коэффициент окислительного фосфорилирования
  • 4.Дыхательный контроль
  • 56. Образование активных форм кислорода (синглетный кислород, пероксид водо-рода, гидроксильный радикал, пероксинитрил). Место образования, схемы реакций, их физиологическая роль.
  • 57. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1) Инициация: образование свободного радикала (l )
  • 2) Развитие цепи:
  • 3) Разрушение структуры липидов
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 59. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 1. Последовательность реакций цитратного цикла
  • 60. Цикл лимонной кислоты, схема процесса. Связь цикла с целью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.
  • 61. Основные углеводы животных, биологическая роль. Углеводы пищи, переваривание углеводов. Всасывание продуктов переваривания.
  • Методы определение глюкозы в крови
  • 63. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Физиологическое значение аэробного гликолиза. Использование глюкозы для синтеза жиров.
  • 1. Этапы аэробного гликолиза
  • 64. Анаэробный гликолиз. Реакция гликолитической оксидоредукции; субстратное фосфорилирование. Распространение и физиологическое значение анаэробного распада глюкозы.
  • 1. Реакции анаэробного гликолиза
  • 66. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена.
  • 68. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов. Гликогенозы и агликогенозы.
  • 2. Агликогенозы
  • 69. Липиды. Общая характеристика. Биологическая роль. Классификация липидов.Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы..
  • 72. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метаболизма жира.
  • 73. Распад жирных кислот в клетке. Активация и перенос жирных кислот в митохондрии. Β-окисление жирных кислот, энергетический эффект.
  • 74. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 2. Регуляция синтеза жирных кислот
  • 76. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • Фонд холестерола в организме, пути его использования и выведения.
  • 1. Механизм реакции
  • 2. Органоспецифичные аминотрансферазы ант и act
  • 3. Биологическое значение трансаминирования
  • 4. Диагностическое значение определения аминотрансфераз в клинической практике
  • 1. Окислительное дезаминирование
  • 81. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 3. Неокислительное дезамитровате
  • 110. Молекулярная структура миофибрилл. Структура и функция основных белков миофибрилл миозина, актина, тропомиозина, тропонина. Основные белки миофибрилл
  • 111. Биохимические механизмы мышечного сокращения и расслабления. Роль ионов кальция и других ионов в регуляции мышечного сокращения.
  • В процессе синтеза полипептидных цепей, транспорта их через мембраны, при сборке олигомерных белков возникают промежуточные нестабильные конформации, склонные к агрегации. На вновь синтезированном полипептиде имеется множество гидрофобных радикалов, которые в трёхмерной структуре спрятаны внутри молекулы. Поэтому на время формирования нативной конформации реакционно-способные аминокислотные остатки одних белков должны быть отделены от таких же групп других белков.

    Во всех известных организмах от прокариотов до высших эукариотов обнаружены белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии. Они способны стабилизировать их конформацию, обеспечивая фолдинг белков. Эти белки получили название "шапероны".

    1. Классификации шаперонов (Ш)

    В соответствии с молекулярной массой все шапероны можно разделить на 6 основных групп:

      высокомолекулярные, с молекулярной массой от 100 до 110 кД;

      Ш-90 - с молекулярной массой от 83 до 90 кД;

      Ш-70 - с молекулярной массой от 66 до 78 кД;

      низкомолекулярные шапероны с молекулярной массой от 15 до 30 кД.

    Среди шаперонов различают: конститутивные белки (высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма), и индуцибельные, синтез которых в нормальных условиях идёт слабо, но при стрессовых воздействиях на клетку резко увеличивается. Индуцибельные шапероны относят к "белкам теплового шока", быстрый синтез которых отмечают практически во всех клетках, которые подвергаются любым стрессовым воздействиям. Название "белки теплового шока" возникло в результате того, что впервые эти белки были обнаружены в клетках, которые подвергались воздействию высокой температуры.

    2. Роль шаперонов в фолдинге белков

    При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70.

    Ш-70 - высококонсервативный класс белков, который присутствует во всех отделах клетки: цитоплазме, ядре, ЭР, митохондриях. В области карбоксильного конца единственной полипептидной цепи шаперонов есть участок, образованный радикалами аминокислот в форме бороздки. Он способен взаимодействовать с участками белковых молекул и развёрнутых полипептидных цепей длиной в 7-9 аминокислот, обогащённых гидрофобными радикалами. В синтезирующейся полипептидной цепи такие участки встречают примерно через каждые 16 аминокислот.

    Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомернoго комплекса, состоящего из 14 субъединиц (рис. 1-23).

    Ш-60 образуют 2 кольца, каждое из которых состоит из 7 субъединиц, соединённых друг с другом. Субъединица Ш-60 состоит из 3 доменов: апикального (верхушечного), промежуточного и экваториального. Верхушечный домен имеет ряд гидрофобных остатков, обращённых в полость кольца, сформированного субъединицами. Экваториальный домен имеет участок связывания с АТФ и обладает АТФ-азной активностью, т.е. способен гидролизовать АТФ до АДФ и Н 3 РО 4 .

    Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть элементы, характерные для несвёрнутых молекул (прежде всего участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60. В специфической среде этой полости, в изоляции от других молекул клетки происходит перебор возможных конформации белка, пока не будет найдена единственная, энергетически наиболее выгодная конформация.

    Высвобождение белка со сформированной нативной конформацией сопровождается гидролизом АТФ в экваториальном домене. Если белок не приобрёл нативной конформации, то он вступает в повторную связь с шапероновым комплексом. Такой шаперонзависимый фолдинг белков требует затрат большого количества энергии.

    Таким образом, синтез и фолдинг белков протекают при участии разных групп шаперонов, препятствующих нежелательным взаимодействиям белков с другими молекулами клетки и сопровождающих их до окончательного формирования нативной структуры.

    4. Болезни, связанные с нарушением фолдинга белков

    Расчёты показали, что лишь небольшая часть теоретически возможных вариантов полипептидных цепей может принимать одну стабильную пространственную структуру. Большинство же таких белков может принимать множество конформаций с примерно одинаковой энергией Гиббса, но с различными свойствами. Первичная структура большинства известных белков, отобранных эволюцией, обеспечивает исключительную стабильность одной конформаций.

    Однако некоторые растворимые в воде белки при изменении условий могут приобретать конформацию плохо растворимых, способных к агрегации молекул, образующих в клетках фибриллярные отложения, именуемые амилоидом (от лат. amylum - крахмал). Так же как и крахмал, амилоидные отложения выявляют при окраске ткани йодом. Это может происходить:

      при гиперпродукции некоторых белков, в результате чего увеличивается их концентрация в клетке;

      при попадании в клетки или образовании в них белков, способных влиять на конформацию других молекул белка;

      при активации протеолиза нормальных белков организма, с образованием нерастворимых, склонных к агрегации фрагментов;

      в результате точечных мутаций в структуре белка.

    В результате отложения амилоида в органах и тканях нарушаются структура и функция клеток, наблюдают их дегенеративные изменения и разрастание соединительнотканных или глиальных клеток. Развиваются болезни, называемые амилоидрзами. Для каждого вида амилоидоза характерен определённый тип амилоида. В настоящее время описано более 15 таких болезней.

    Болезнь Альцхаймера

    Болезнь Альцхаймера - наиболее часто отмечаемый?-амилоидоз нервной системы, как правило, поражающий лиц преклонного возраста и характеризующийся прогрессирующим расстройством памяти и полной деградацией личности. В ткани мозга откладывается?-амилоид - белок, образующий нерастворимые фибриллы, нарушающие структуру и функции нервных клеток. ?-амилоид - продукт изменения конформаций нормального белка организма человека. Он образуется из более крупного предшественника частичным протеолизом и синтезируется во многих тканях. ?-Амилоид, в отличие от своего нормального предшественника, содержащего много?-спиральных участков, имеет вторичную?-складчатую структуру, агрегирует с образованием нерастворимых фибрилл, устойчив к действию протеолитических ферментов.

    Причины нарушения фолдинга нативных белков в ткани мозга ещё предстоит выяснить. Возможно, с возрастом уменьшается синтез шаперонов, способных участвовать в формировании и поддержании нативной конформаций белков, или увеличивается активность протеаз, что приводит к увеличению концентрации белков, склонных изменять конформацию.

    Прионовые болезни

    Прионы - особый класс белков, обладающих инфекционными свойствами. Попадая в организм человека или спонтанно возникая в нём, они способны вызывать тяжёлые неизлечимые заболевания ЦНС, называемые прионовыми болезнями. Название "прионы" происходит от аббревиатуры английской фразы proteinaceous infectious particle - белковая инфекционная частица.

    Прионовый белок кодируется тем же тленом, что и его нормальный аналог, т.е. они имеют идентичную первичную структуру. Однако два белка обладают различной конформацией: прионовый белок характеризуется высоким содержанием?-слоёв, в то время как нормальный белок имеет много?-спиральных участков. Кроме того, прионовый белок обладает устойчивостью к действию протеаз и, попадая в ткань мозга или образуясь там спонтанно, способствует превращению нормального белка в прионовый в результате межбелковых взаимодействий. Образуется так называемое "ядро полимеризации", состоящее из агрегированных прионовых белков, к которому способны присоединяться новые молекулы нормального белка. В результате в их пространственной структуре происходят конформационные перестройки, характерные для прионовых белков.

    Известны случаи наследственных форм прионовых болезней, вызванных мутациями в структуре данного белка. Однако возможно и заражение человека прионовыми белками, в результате чего возникает заболевание, приводящее к гибели больного. Так, куру - прионовая болезнь аборигенов Новой Гвинеи, эпидемический характер которой связан с традиционным каннибализмом в этих племенах и передачей инфекционного белка от одной особи к другой. В связи с изменением образа их жизни данное заболевание практически исчезло.

  • Биологическая химия Лелевич Владимир Валерьянович

    Фолдинг

    Фолдинг белков – процесс сворачивания полипептидной цепи в правильную пространственную структуру. При этом происходит сближение удаленных аминокислотных остатков полипептидной цепи, приводящее к формированию нативной структуры. Эта структура обладает уникальной биологической активностью. Поэтому фолдинг является важной стадией преобразования генетической информации в механизмы функционирования клетки.

    Структура и функциональная роль шаперонов в фолдинге белков

    В процессе синтеза полипептидных цепей, транспорта их через мембраны, при сборке олигомерных белков возникают промежуточные нестабильные конформации, склонные к агрегации. На вновь синтезированном полипептиде имеется множество гидрофобных радикалов, которые в трёхмерной структуре спрятаны внутри молекулы. Поэтому на время формирования нативной конформации реакционноспособные аминокислотные остатки одних белков должны быть отделены от таких же групп других белков.

    Во всех известных организмах от прокариотов до высших эукариотов обнаружены белки, способные связываться с белками, находящимися в неустойчивом, склонном к агрегации состоянии. Они способны стабилизировать их конформацию, обеспечивая фолдинг белков. Эти белки получили название шаперонов.

    Классификация шаперонов (Ш)

    В соответствии с молекулярной массой все шапероны можно разделить на 6 основных групп:

    1. высокомолекулярные, с молекулярной массой от 100 до 110 кДа;

    2. Ш-90 – с молекулярной массой от 83 до 90 кДа;

    3. Ш-70 – с молекулярной массой от 66 до 78 кДа;

    6. Низкомолекулярные шапероны с молекулярной массой от 15 до 30 кДа.

    Среди шаперонов различают: конститутивные белки (высокий базальный синтез которых не зависит от стрессовых воздействий на клетки организма), и индуцибельные, синтез которых в нормальных условиях идёт слабо, но при стрессовых воздействиях на клетку резко увеличивается. Индуцибельные шапероны относятся к «белкам теплового шока», быстрый синтез которых отмечают практически во всех клетках, которые подвергаются любым стрессовым воздействиям. Название «белки теплового шока» возникло в результате того, что впервые эти белки были обнаружены в клетках, которые подвергались воздействию высокой температуры.

    Роль шаперонов в фолдинге белков

    При синтезе белков N-концевая область полипептида синтезируется раньше, чем С-концевая область. Для формирования конформации белка нужна его полная аминокислотная последовательность. Поэтому в период синтеза белка на рибосоме защиту реакционно-способных радикалов (особенно гидрофобных) осуществляют Ш-70.

    Ш-70 – высококонсервативный класс белков, который присутствует во всех отделах клетки: цитоплазме, ядре, митохондриях.

    Фолдинг многих высокомолекулярных белков, имеющих сложную конформацию (например, доменное строение), осуществляется в специальном пространстве, сформированном Ш-60. Ш-60 функционируют в виде олигомерного комплекса, состоящего из 14 субъединиц.

    Шапероновый комплекс имеет высокое сродство к белкам, на поверхности которых есть элементы, характерные для несвёрнутых молекул (прежде всего участки, обогащённые гидрофобными радикалами). Попадая в полость шаперонового комплекса, белок связывается с гидрофобными радикалами апикальных участков Ш-60. В специфической среде этой полости, в изоляции от других молекул клетки происходит выбор возможных конформаций белка, пока не будет найдена единственная, энергетически наиболее выгодная конформация.

    Высвобождение белка со сформированной нативной конформацией сопровождается гидролизом АТФ в экваториальном домене. Если белок не приобрёл нативной конформации, то он вступает в повторную связь с шапероновым комплексом. Такой шаперонзависимый фолдинг белков требует затрат большего количества энергии.

    Таким образом, синтез и фолдинг белков протекает при участии разных групп шаперонов, препятствующих нежелательным взаимодействиям белков с другими молекулами клетки и сопровождающих их до окончательного формирования нативной структуры.

    Роль шаперонов в защите белков клеток от денатурирующих стрессовых воздействий

    Шапероны, участвующие в защите клеточных белков от денатурирующих воздействий, как уже говорилось выше, относят к белкам теплового шока (БТШ) и в литературе часто обозначают как HSP (англ. heat shock protein).

    При действии различных стрессовых факторов (высокая температура, гипоксия, инфекция, УФО, изменение рН среды, изменение молярности среды, действие токсичных химических веществ, тяжёлых металлов и т.д.) в клетках усиливается синтез БТШ. Имея высокое сродство к гидрофобным участкам частично денатурированных белков, они могут препятствовать их полной денатурации и восстанавливать нативную конформацию белков.

    Установлено, что кратковременные стрессовые воздействия увеличивают выработку БТШ и повышают устойчивость организма к длительным стрессовым воздействиям. Так, кратковременная ишемия сердечной мышцы в период бега при умеренных тренировках значительно повышает устойчивость миокарда к длительной ишемии. В настоящее время перспективными исследованиями в медицине считают поиски фармакологических и молекулярно-биологических способов активации синтеза БТШ в клетках.

    Болезни, связанные с нарушением фолдинга белков

    Расчёты показали, что лишь небольшая часть теоретически возможных вариантов полипептидных цепей может принимать одну стабильную пространственную структуру. Большинство же таких белков может принимать множество конформаций с примерно одинаковой энергией Гиббса, но с различными свойствами. Первичная структура большинства известных белков, отобранных эволюцией, обеспечивает исключительную стабильность одной конформации.

    Однако некоторые растворимые в воде белки при изменении условий могут приобретать конформацию плохо растворимых, способных к агрегации молекул, образующих в клетках фибриллярные отложения, именуемые амилоидом (от лат. аmylum – крахмал). Так же, как и крахмал, амилоидные отложения выявляют при окраске ткани йодом.

    Это может происходить:

    1. при гиперпродукции некоторых белков, в результате чего увеличивается их концентрация в клетке;

    2. при попадании в клетки или образовании в них белков, способных влиять на конформацию других молекул белка;

    3. при активации протеолиза нормальных белков организма, с образованием нерастворимых, склонных к агрегации фрагментов;

    4. в результате точечных мутаций в структуре белка.

    В результате отложения амилоида в органах и тканях нарушаются структура и функция клеток, наблюдаются их дегенеративные изменения и разрастание соединительнотканных клеток. Развиваются болезни, называемые амилоидозами. Для каждого вида амилоидоза характерен определённый тип амилоида. В настоящее время описано более 15 таких болезней.

    Фолдинг – это процесс укладки вытянутой полипептидной цепи в правильную трехмерную пространственную структуру. Для обеспечения фолдинга используется группа вспомогательных белков под названием шапероны (chaperon, франц. – спутник, нянька). Они предотвращают взаимодействие новосинтезированных белков друг с другом, изолируют гидрофобные участки белков от цитоплазмы и "убирают" их внутрь молекулы, правильно располагают белковые домены. Шапероны представлены семействами, состоящими из гомологичных по строению и функциям белков, которые отличаются по характеру экспрессии и присутствию в разных компартментах клетки.

    В целом шапероны способствуют переходу структуры белков от первичного уровня до третичного и четвертичного, но они не входят в состав конечной белковой структуры.

    Новосинтезированные белки после выхода с рибосом для правильного функционирования должны укладываться в стабильные трехмерные структуры и оставаться такими на протяжении всей функциональной жизни клетки. Поддержание контроля качества структуры белка и осуществляется шаперонами, катализирующими укладку полипептидов. Сборка полипротеинов и укладка мультибелковых комплексов также осуществляется шаперонами. Шапероны связываются с гидрофобными участками неправильно уложенных белков, помогают им свернуться и достигнуть стабильной нативной структуры и, тем самым, предотвращают их включение в нерастворимые и нефункциональные агрегаты. В течение своей функциональной жизни белок может подвергаться различным стрессам и денатурации. Такие частично денатурированные белки могут стать, во-первых, мишенью протеаз, во-вторых, агрегировать и, в-третьих, укладываться в нативную структуру с помощью шаперонов. Баланс и эффективность, с которой происходят эти три процесса, определяются соотношением компонентов, участвующих в этих реакциях.

    Транспорт многих белков из одного компартмента в другой.

    Участие в сигнальных путях. Например, присутствие Hsp70 необходимо для активации фосфатазы, которая путем дефосфорилирования ингибирует протеинкиназу JNK , компонент сигнала стресс-индуцированного апоптоза, т.е. Hsp70 является частью антиапоптозного сигнального пути.

    Регуляция функций различных молекул. Например, стероидный рецептор, находящийся в цитоплазме, связан с Hsp90; лиганд, попадающий в цитоплазму, присоединяется к рецептору и вытесняет шаперон из комплекса. После этого комплекс рецептор-лиганд приобретает способность связываться с ДНК, мигрирует в ядро и осуществляет функцию транскрипционного фактора.

    При нарушении функции шаперонов и отсутствии фолдинга в клетке формируются белковые отложения – развивается амилоидоз. Амилоид представляет собой гликопротеид, основным компонентом которого являются фибриллярные белки. Они образуют фибриллы, имеющие характерную улырамикроскопическую структуру. Фибриллярные белки амилоида неоднородны. Насчитывают около 15 вариантов амилоидоза.


    Прио́ны

    Складывается впечатление, что фолдинг с участием фолдаз и шаперонов приводит к правильной. Наиболее оптимальной в энергетическом и функциональном отношениях структкре. Однако это не так. Существует группа тяжелых неврологических болезней, обусловленных неправильным фолдингом одного, вполне определенного белка.

    Известно, что PrP может существовать в двух конформациях - «здоровой» - PrPC, которую он имеет в нормальных клетках (C - от англ. cellular - «клеточный»), в которой преобладают альфа-спирали, и «патологической» - PrPSc, собственно прионной (Sc- от scrapie), для которой характерно наличие большого количества бета-тяжей.

    Прионный белок, обладающий аномальной трёхмерной структурой, способен прямо катализировать структурное превращение гомологичного ему нормального клеточного белка в себе подобный (прионный), присоединяясь к белку-мишени и изменяя его конформацию. Как правило, прионное состояние белка характеризуется переходом α-спиралей белка в β-слои.

    При попадании в здоровую клетку, PrPSc катализирует переход клеточного PrPC в прионную конформацию. Накопление прионного белка сопровождается его агрегацией, образованием высокоупорядоченных фибрил (амилоидов), что в конце концов приводит к гибели клетки. Высвободившийся прион, по-видимому, оказывается способен проникать в соседние клетки, также вызывая их гибель.

    Функции белка PrPC в здоровой клетке - поддержание качества миелиновой оболочки, которая в отсутствие этого белка постепенно истончается. В норме белок PrPC ассоциирован с клеточной мембраной, гликозилирован остатком сиаловой кислоты. Он может совершать циклические переходы внутрь клетки и обратно на поверхность в ходе эндо- и экзоцитоза.

    До конца механизм спонтанного возникновения прионных инфекций не ясен. Считается (но ещё не полностью доказано), что прионы образуются в результате ошибок в биосинтезе белков. Мутации генов, кодирующих прионный белок (PrP), ошибки трансляции, процессы протеолиза - считаются главными кандидатами на механизм возникновения прионов.

    Таким образом, прио́ны - особый класс инфекционных агентов, чисто белковых, не содержащих нуклеиновых кислот, вызывающих тяжёлые заболевания центральной нервной системы у человека и ряда высших животных (т. н. «медленные инфекции»).

    Есть данные, дающие основание считать, что прионы являются не только инфекционными агентами, но и имеют функции в нормальных биопроцессах. Так, например, существует гипотеза, что через прионы осуществляется механизм генетически обусловленного стохастического старения.

    Прионы - единственные известные инфекционные агенты, размножение которых происходит без участия нуклеиновых кислот.

    Во второй половине XX века врачи столкнулись с необычным заболеванием человека - постепенно прогрессирующим разрушением головного мозга, происходящим в результате гибели нервных клеток. Это заболевание получило название губчатой энцефалопатии. Похожие симптомы были известны давно, но наблюдались они не у человека, а у животных (скрейпи овец), и долгое время между ними не находили достаточной обоснованной связи.

    Новый интерес к их изучению возник в 1996 г., когда в Великобритании появилась новая форма заболевания, обозначаемая как «новый вариант болезни Крейтцфельдта-Якоба.

    Важным событием было распространение «коровьего бешенства» в Великобритании, эпидемия которого была сначала в 1992-1993 гг, а потом и в 2001 г охватила несколько европейских государств, но тем не менее экспорт мяса во многие страны не был прекращён. Заболевание связывают с использованием «прионизированной» костной муки в кормах и премиксах, изготовленной из туш павших или заболевших животных, возможно, и не имевших явных признаков заболевания.

    Пути переноса причинного фактора болезни, механизмы проникновения прионов в организм и патогенез заболевания изучены пока недостаточно.

    Прионы млекопитающих - возбудители губчатой энцефалопатии

    Скрейпи овцы и козы Прион скрейпи OvPrPSc

    Трансмиссивная энцефаломиопатия норок (ТЭН) Прион ТЭН и MkPrPSc

    Chronic wasting disease (CWD) олени и лоси CWD прион MDePrPSc

    Губчатая энцефалопатия крупного рогатого скота (ГЭКРС) Коровы Прион ГЭКРС BovPrPSc

    Губчатая энцефалопатия кошачьих (ГЭК) Кошки Прион ГЭК FePrPSc

    Губчатая энцефалопатия экзотических копытных (EUE) Антилопы и большой куду EUE прион NyaPrPSc

    Куру Люди Прион куру HuPrPSc

    Болезнь Крейцфельда-Якоба (БКЯ) Люди Прион БКЯ HuPrPSc

    (New) Variant Creutzfeldt-Jakob disease (vCJD, nvCJD) Люди vCJD прион HuPrPSc

    Синдром Герстманна-Штройслера-Шейнкера (GSS) Люди GSS прион HuPrPSc

    Фатальная семейная бессонница (ФСБ) Люди Прион ФСБ HuPrPS

    Человек может заразиться прионами, содержащимися в пище, так как они не разрушаются ферментами пищеварительного тракта. Так как стенками кишечника они не адсорбируются, то могут проникать в кровь только через поврежденные ткани. В конечном итоге они попадают в центральную нервную систему. Так переносится новый вариант болезни Крейтцфельдта-Якоба (nvCJD), которой люди заражаются после употребления в пищу говядины, содержащей нервную ткань из голов скота, больных бычьей губчатой энцефалопатией (BSE, коровье бешенство).

    На практике доказана возможность прионов заражать организм мышей воздушно-капельным путем.

    Прионы могут проникать в тело и парентеральным путем. Были описаны случаи заражения при внутримышечном введении препаратов, изготовленных из человеческих гипофизов (главным образом гормоны роста для лечения карликовости), а также заражение мозга инструментами при нейрохирургических операциях, поскольку прионы устойчивы к применяемым в настоящее время термическим и химическим методам стерилизации. Эта форма болезни Крейтцфельдта-Якоба обозначается как ятрогенная (1CJD).

    При определённых, неизвестных условиях, в организме человека может произойти спонтанная трансформация прионного белка в прион. Так возникает так называемая спорадическая болезнь Крейтцфельдта-Якоба (sCJD), впервые описанная в 1920 г. независимо друг от друга Гансом Герхардом Крейтцфельдтом и Альфонсом Марией Якобом. Предполагается, что спонтанное возникновение этой болезни связано с фактом, что в норме в человеческом теле постоянно возникает небольшое количество прионов, которые эффективно ликвидируются клеточным Аппаратом Гольджи. Нарушение этой способности «самоочищения» клеток может привести к повышению уровня прионов выше допустимой границы нормы и к их дальнейшему неконтролируемому распространению. Причиной возникновения спорадической болезни Крейтцфельдта-Якоба согласно этой теории является нарушение функции Аппарата Гольджи в клетках.

    Особую группу прионовых заболеваний представляют собой наследственные (врожденные) болезни, вызванные мутацией гена прионового белка, который делает возникший прионовый белок более подверженным спонтанному изменению пространственной конфигурации и превращения их в прионы. К этой группе наследственных заболеваний относится и наследственная форма болезни Крейтцфельдта-Якоба (fCJD), которая наблюдается в ряде стран мира. При прионовой патологии наивысшая концентрация прионов обнаружена в нервной ткани заражённых людей. Прионы встречаются в лимфатической ткани. Наличие прионов в биологических жидкостях, включая слюну, пока не было однозначно подтверждено. Если представление о постоянном возникновении небольшого количества прионов верно, то можно предположить, что новые, более чувствительные методы диагностики откроют это количество прионов, разбросанное по различным тканям. В данном случае, однако, речь пойдёт о «физиологическом» уровне прионов, которые не представляют собой никакой угрозы для человека.

    nature - природа) - термин биологической химии , означающий потерю белковыми веществами их естественных свойств (растворимости , гидрофильности и др.) вследствие нарушения пространственной структуры их молекул .

    Процесс денатурации отдельной белковой молекулы, приводящий к распаду её «жёсткой» трёхмерной структуры, иногда называют плавлением молекулы.

    Механизмы денатурации

    Практически любое заметное изменение внешних условий, например, нагревание или обработка белка кислотой приводит к последовательному нарушению четвертичной, третичной и вторичной структур белка. Обычно денатурация вызывается повышением температуры, действием сильных кислот и щелочей, солей тяжелых металлов, некоторых растворителей (спирт), радиации и др.

    Денатурация часто приводит к тому, что в коллоидном растворе белковых молекул происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит, например, как образование «белка» при жарке яиц.

    Ренатурация

    Ренатурация - процесс, обратный денатурации, при котором белки возвращают свою природную структуру. Нужно отметить, что не все белки способны ренатурировать; у большинства белков денатурация необратима.

    См. также

    Wikimedia Foundation . 2010 .

    Смотреть что такое "Сворачивание белка" в других словарях:

      Белок до и после сворачивания Сворачивание белка процесс, аналогичный денатурации белка: в коллоидном растворе белковых молекул под действием внешних воздействий происходит процесс агрегации частиц белка в более крупные. Визуально это выглядит,… … Википедия

      Это слово может иметь следующие значения: Сворачивание (программное обеспечение) одна из функций текстового редактора. В биологической химии: Фолдинг белка (англ. folding сворачивание) процесс формирования пространственной структуры… … Википедия

      Кристаллы различных белков, выращенные на космической станции «Мир» и во время полётов шаттлов НАСА. Высокоочищенные белки при низкой температуре образуют кристаллы, которые используют для получения модели данного белка. Белки (протеины,… … Википедия

      Полимер - (Polymer) Определение полимера, виды полимеризации, синтетические полимеры Информация об определении полимера, виды полимеризации, синтетические полимеры Содержание Содержание Определение Историческая справка Наука о Полимеризация Виды… … Энциклопедия инвестора

      Типа Cys2His2 включает альфа спираль и антипараллельную бета структуру. Ион цинка связан кооординационными связями с 2 остатками гистидина и 2 остатками ци … Википедия

      Диаграмма двух параллельных белковых альфа спиралей лейциновой застёжки (вид с торца). Лейцин показан как d … Википедия

      - (англ. protein sorting, protein targeting) процессы мечения и последующего транспорта белков в живых клетках, которые приводят к попаданию белков в определенные компартменты клетки. Синтезируемые в цитоплазме на рибосомах белки должны… … Википедия

      В этой статье не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена. Вы можете … Википедия

      - (от лат. translatio передача), программируемый генами процесс синтеза белка. Посредством Т. осуществляется реализация генетич. информации нуклеиновых к т (см. Генетический код). По совр. представлениям, исходный ген в виде ДНК непосредственно… … Химическая энциклопедия

    Книги

    • Проблема сворачивания белка. Учебное пособие , Бен-Наим Арье. Проблема сворачивания (фолдинга) белка еще не имеет общепризнанного окончательного решения. В связи с этим данная проблема вызывает интерес исследователей по всему миру. В своей работе автор…