Реферат: Философские аспекты теории относительности А. Эйнштейна

Специальная теория относительности была первой физической теорией, которая радикально изменила взгляды ученых на пространство, время и движение. Если раньше пространство и время рассматривались обособленно от движения материальных тел, а само движение независимо от систем отсчета, т.е. как абсолютное, то с возникновением специальной теории относительности было твердо установлено:

    всякое движение может описываться только по отношению к другим телам, которые могут приниматься за системы отсчета, связанные с определенной системой координат;

    пространство и время тесно взаимосвязаны друг с другом, ибо только совместно они определяют положение движущегося тела. Именно поэтому время в теории относительности выступает как четвертая координата для описания движения, хотя и отличная от пространственных координат;

    одинаковость формы законов механики для всех инерциальных систем отсчета сохраняет свою силу и для законов электродинамики, но только для этого вместо преобразований Галилея используются преобразования Лоренца;

    при обобщении принципа относительности и распространении его на электромагнитные процессы, постулируется постоянство скорости света, которое никак не учитывается в механике.

Общая теория относительности отказывается от такого ограничения, также как и от требования рассматривать лишь инерциальные системы отсчета, как это делает специальная теория. Благодаря такому глубокому обобщению она приходит к выводу:все системы отсчета являются равноценными для описания законов природы .

С философской точки зрения наиболее значительным результатом общей теории относительности является установление зависимости пространственно-временных свойств окружающего мира от расположения и движения тяготеющих масс.

Именно благодаря воздействию тел с большими массами происходит искривление путей движения световых лучей. Следовательно, гравитационное поле, создаваемое такими телами, определяет в конечном итоге пространственно-временные свойства мира. В специальной теории относительности абстрагируются от действия гравитационных полей и поэтому ее выводы оказываются применимыми лишь для небольших участков пространства-времени. Концепцию относительности, лежащую в основе общей и специальной физической теории, не следует смешивать с принципом относительности наших знаний, в том числе и в физике. Если первая из них касается движения физических тел по отношению к разным системам отсчета, т.е. характеризует процессы, происходящие в объективном, материальном мире, то вторая относится к росту и развитию нашего знания, т.е. касается мира субъективного, процессов изменения наших представлений об объективном мире.

Преемственная связь между общей и специальной теорий относительности выражается принципом соответствия – методологическим принципом, устанавливающим связь между старыми и новыми теориями.

      1. Симметрия пространства и времени и законы сохранения

Связь между симметрией пространства и законами сохранения установила немецкий математик Эмми Нетер (1882–1935). Она сформулировала и доказала фундаментальную теорему математической физики, названную ее именем, из которой следует, что из однородности пространства и времени вытекают законы сохранения соответственно импульса и энергии, а из изотропности пространства – закон сохранения момента импульса.

Эта теорема выражает принцип инвариантности относительно сдвигов в пространстве и во времени , т.е. параллельных переносов начала координат, и начала отсчета времени:смещение во времени и в пространстве не влияет на протекание физических процессов. Указанный принцип является следствиемоднородности пространства и времени:

    однородность пространства заключается в том, что при параллельном переносе в пространстве замкнутой системы тел как целого ее физические свойства и законы движения не изменяются, иными словами, не зависят от выбора положения начала координат инерциальной системы отсчета.

    однородность времени означает инвариантность физических законов относительно выбора начала отсчета времени. Например, при свободном падении тела в поле силы тяжести его скорость и пройденный путь зависят лишь от начальной скорости и продолжительности свободного падения тела и не зависят от того, когда тело начало падать.

С однородностью пространства связан закон сохранения импульса: импульс замкнутой системы сохраняется, т. е. не изменяется с течением времени . Закон сохранения импульса справедлив не только в классической физике, хотя он и получен как следствие законов Ньютона. Эксперименты доказывают, что он выполняется и для замкнутых систем микрочастиц, подчиняющихся законам квантовой механики. Импульс сохраняется и для незамкнутой системы, если геометрическая сумма всех внешних сила равна нулю. Закон сохранения импульса носит универсальный характер и является фундаментальным законом природы.

С однородностью времени связан закон сохранения механической энергии : в системе тел, между которыми действуют только консервативные силы, полная механическая энергия сохраняется, т.е. не изменяется со временем. Консервативные силы действуют только в потенциальных полях, характеризующихся тем, что работа, совершаемая действующими силами при перемещении тела из одного положения в другое, не зависит от того, по какой траектории это перемещение произошло, а зависит только от начального и конечного положений. Если же работа, совершаемая силой, зависит от траектории перемещения тела из одной точки в другую, то такая сила называется диссипативной; например, сила трения.

Механические системы, на тела которых действуют только консервативные силы (внутренние и внешние), называются консервативными системами. Закон сохранения механической энергии можно сформулировать еще и так: в консервативных системах полная механическая энергия сохраняется . В консервативных системах могут происходить лишь превращения кинетической энергии в потенциальную энергию и обратно в эквивалентных количествах.

В диссипативных системах механическая энергия постепенно уменьшается из-за преобразования ее в другие (немеханические) формы энергии. Этот процесс называется диссипацией, или рассеянием энергии.

В системе, в которой действуют консервативные и диссипативные силы, например силы трения, полная механическая энергия системы не сохраняется. Следовательно, для такой системы закон сохранения механической энергии не выполняется. Однако при убывании механической энергии всегда возникает эквивалентное количество энергии другого вида. Таким образом, энергия никогда не исчезает и не появляется вновь, она лишь превращается из одного вида в другой. В этом заключается физическая сущность закона сохранения и превращения энергии, сущность неуничтожения материи и ее движения, поскольку энергия – универсальная мера различных форм движения и взаимодействия.

Закон сохранения энергии – результат обобщения многих экспериментальных данных. Как мы уже говорили, идея этого закона принадлежит М.В. Ломоносову, изложившему закон сохранения материи и движения, а количественная его формулировка дана немецкими учеными Ю. Майером и Г. Гельмгольцем.

Обратимся еще к одному свойству симметрии пространства – его изотропности . Изотропность пространства означает инвариантность физических законов относительно выбора направлений осей координат системы отсчета (относительно поворота замкнутой системы в пространстве на любой угол).

Из изотропности пространства следует фундаментальный закон природы – закон сохранения момента импульса: момент импульса замкнутой системы сохраняется, т. е. не изменяется с течением времени.

Выявление различных симметрий в природе, а иногда и постулирование их стало одним из методов теоретического исследования свойств микро- , макро- и мегамира. Возросла в связи с этим роль весьма сложного и абстрактного математического аппарата – теории групп – наиболее адекватного и точного языка для описания симметрии.

Дальнейшее углубление понимания сущности О. т. состояло в открытии связи структуры пространства-времени и причинности (ирл. физик А. Робб и др.). Каждому событию отвечает множество событий, на к-рые, оно воздействует (в принципе может воздействовать), – "область его воздействия" в четырехмерном многообразии событий. При этом скорость передачи воздействия ограничена скоростью света. Математически доказывается, что эти области определяются "геометрией" пространства- времени и, обратно, геометрия пространства-времени полностью определяется структурой совокупности этих областей. Коротко говоря, свойства пространства-времени определяются отношениями воздействия одних событий на другие. Это приводит к след. определению самого пространства-времени: пространство-время есть множество всех событий в мире, отвлеченно от всех свойств, кроме тех, к-рые определяются отношениями воздействия одних событий на другие. Этим устанавливается пространств.-врем. и причинно-следств. структуры мира, т.к. воздействие есть элемент причинно-следств. связи. Т.о., движущейся материи, определяемая связью ее элементов через воздействие и взятая только ст. зр. формы (системы отношений), и есть пространств.-врем. структура материи.

О б щ а я О. т. Включение в частную О. т. всемирного тяготения представляло трудности, к-рые были преодолены Эйнштейном путем построения ОТО (1915). Работы Эйнштейна, В. А. Фока и др. привели к след. пониманию ее основ. 1) Структура пространства-времени оказывается такой же, как в в частной О. т., только приближенно и локально (в достаточно малых областях пространства, в течение достаточно короткого времени). В больших областях пространство-время имеет более сложную структуру (математически оно является римановым или, по др. терминологии, псевдоримановым пространством). Соответ-ственно, все выводы частной О. т. верны лишь приближенно и локально. 2) Отличие структуры пространства-времени от принимаемой в частной О. т. определяется распределением и движением масс материи. Точно это выражается уравнением Эйнштейна, связывающим величины, характеризующие указ. отличие ("тензор кривизны"), с величинами, характеризующими распределение и движение масс ("тензор материи"). Отсюда математически выводится, что массы материи должны двигаться так, как если бы между ними действовали силы тяготения по закону, к-рый в первом приближении совпадает с законом тяготения Ньютона. Т. е. массы материи, определяя структуру пространства-времени, определяют через это и свое собств. движение. Поле тяготения есть не что , как отличие структуры пространства-времени от однородной, принятой в частной О. т. Тело, на к-рое не действует никакое др. и собств. влиянием к-рого на структуру пространства-времени можно пренебречь, движется по инерции, но из-за изменений в структуре пространства-времени, вызванных посторонними массами, движение это будет сложным, что классич. толковала как влияние сил тяготения. С точки зрения О. т. тут действуют не особые силы, а происходит движение по инерции в неоднородном пространстве-времени (представляющееся в нем геодезической, т.е. "прямейшей" линией). Применение ОТО к большим частям Вселенной и даже ко Вселенной в целом привело к важным результатам, но оно зависит от выдвигаемых гипотез, что делает выводы спорными, не говоря уже о спорности применения любой теории ко Вселенной в целом (см. Космология).

Подтверждения и обоснования О. т. Частная О.т. имеет многочисл. подтверждения, из к-рых упомянем следующие. (1) Данные, послужившие источником О. т., как, напр., опыт Майкельсона и др. (2) Закон взаимосвязи массы и энергии, всеобщий характер к-рого установлен несомненно, особенно результатами атомной физики. (3) Эйнштейновская зависимость импульса от скорости, проверенная с большой точностью в многочисл. опытах (ускорители заряженных частиц, космич. лучи и др.). (4) Относительность длительности подтверждается измерением "продолжительности жизни" космич. частиц по отношению к Земле и спец. опытами (релятивистский Доплер-эффект). (5) Заключающееся в О. т. о лоренц-инвариантности физич. законов привело к соответствующей формулировке уравнений квантовой механики. Так, появилась, в частности, теория Дирака, к-рая нашла блестящее , а вместе с ней получила, хотя и косвенное, но столь же блестящее подтверждение частная О. т. В связи с атомной техникой частная О. т. приобрела практич. , инженерные расчеты ускорителей и атомных установок опираются на ее результаты. В целом частная О.т. является бесспорно верной теорией, насколько вообще может быть верной физич. теория (уже ОТО показала, что частная О.т. должна считаться только приближенной).

Подтверждением ОТО служит прежде всего то, что она дает закон тяготения в полном согласии с опытом. До ОТО не существовала собственно теория тяготения: закон тяготения Ньютона не был связан с законами механики, основанная на нем теория была чисто феноменологической. ОТО, открыв органич. связь структуры пространства-времени, осн. законов механики и тяготения, тем самым объяснила это последнее. Поэтому неправильно мнение, что подтверждением ОТО служат только сравнительно небольшие эффекты, к-рые она объяснила или предсказала в отличие от того, что следовало из закона Ньютона. Закон тяготения Эйнштейна точнее закона Ньютона, как показала ; предсказанное О. т. влияние тяготения на распространение света и его частоту также подтверждается. Как теория тяготения ОТО является достаточно обоснованной. Применение ее к большим частям Вселенной объясняет фактов (напр., ).

Т о л к о в а н и я О. т. Относительности теория встречала различные возражения и неверные толкования, основанные на непонимании ее содержания в соединении с филос. ошибками. Возражения по поводу ее необоснованности или парадоксальности ее выводов опровергнуты многочисл. экспериментальными и теоретич. результатами. Попытки заменить О. т. теорией, к-рая сохраняла бы старые представления о пространстве и времени, объясняя подтвержденные опытом результаты О.т. спец. механизмами взаимодействия, ничего не дали. Философски они неудовлетворительны, т.к. отрывают пространство и время от материи. Высказывавшиеся мнения, что О.т. идеалистична, нелепы. Во-первых, теория, настолько точно соответствующая действительности, не может быть идеалистической. Филос. ошибки или неточности в ее толковании не могут сделать идеалистическим ее содержание. Во-вторых, в ее построении Эйнштейн исходил из материалистич. принципа, выводя законы пространства и времени из законов движения материи на новом уровне их познания. Если классич. представления о пространстве и времени отвечали законам механики Ньютона, то представления, данные Эйнштейном, опирались на законы электромагнетизма [ср. замечание. Ленина: "это, конечно, сплошной вздор, будто утверждал... обязательно "механическую", а не электромагнитную, не какую-нибудь еще неизмеримо более сложную картину мира..." (Соч., т. 14, с. 267)]. Возражения прртив равноправности инерциальных систем (что, напр., система, связанная с Землей, неравноправна системе, связанной с частицей) основаны на непонимании абстракции. Инерциальные системы равноправны не как конкретные физич. системы, но в смысле проявления относительно них общих физич. законов. Система отсчета трактуется иногда как "т. зр. наблюдателя", связанные с ней системы координат объявляются только способом описания явлений, они якобы "фиктивны и не имеют отношения к реальному строению мира". Соответственно, принцип относительности трактуется как зависимость законов от способа описания. Все это неверно. Координация в пространстве и времени по отношению к системе отсчета осуществляется объективно, т.е. отвечает строению мира. Способы же описания и "точки зрения" лишь постольку имеют смысл, поскольку отвечают объективной действительности. Независимость законов от способа описания есть тривиальность, т.к. не может зависеть от описания. Принцип же относительности есть физич. закон и, кстати, он верен лишь приближенно, как показала ОТО.

Более глубокими являются след. возражения и толкования.

1. Т.н. релятивистские эффекты – относительность длительности, расстояния, массы и т.п. – подвергались ошибочным толкованиям. Напр., говорят, что движущийся стержень сокращается, и даже ставился об исследовании молекулярных сил, вызывающих такое сокращение. Однако лоренцово сокращение состоит в другом. В системе S, по отношению к к-рой стержень движется, отмечается одновременное (относительно S) положение его концов. Расстояние между ними (измеренное в S) оказывается меньше длины стержня (определяемой обычным путем в системе, в к-рой стержень неподвижен). Стало быть, стержень вовсе не сокращается, с ним самим вообще ничего не происходит. Только его к системе S отлично от отношения к системе S´, в к-рой он неподвижен. Присущие стержню св-ва, в частности длина, проявляются в S иначе, чем в S´, в др. системе S´´ они проявляются еще иначе, и т.д. Говорить о силах, вызывающих лоренцово сокращение, то же, что говорить о силах, удлиняющих тень к вечеру. То же можно сказать и об относительности массы. Таков смысл "относительности". Предметам и процессам присущи определ. св-ва, к-рые различно проявляются в разных отношениях. Такое зависит не только от самого предмета или процесса, но и от той системы, по отношению к к-рой эти св-ва проявляются. Но как св-ва объективны, так и проявления их в разных отношениях столь же объективны. Метафизич. св-в и отношений, абсолютного и относительного ошибочно, как ошибочно смешивать относительное с субъективным, относительность - с точкой зрения наблюдателя. О. т., обнаружив относительность величин, считавшихся до того безотносительными, присущими самому предмету, открыла вместе с тем более сложные св-ва предметов, проявлениями к-рых оказываются эти величины.

2. В исходных положениях частной О. т. пользуются координатами х, у, z и временем t в инерциальной системе отсчета. Но эти понятия требуют определения. Соответственно Эйнштейн дал одновременности пространственно разделенных событий посредством световых сигналов. На той же основе можно дать определение координат х, у, z и времени t. Утверждалось, что определения их условны и необъективны. Это неверно, т.к. испускание и электромагнитных колебаний (сигналов) происходит в природе без всяких наблюдателей и условных соглашений, устанавливая объективную взаимную координацию явлений. Закон постоянства скорости света есть вместе с тем закон этой координации, так что указ. определение х, у, z, t и этот закон есть два выражения одного и того же объективного универс. факта. Др. определения координат и времени, напр. откладыванием масштабов и часами, сверяются с этим. Представление же об условности таких определений основано на поверхностном взгляде на основы О. т. и противопоставлении определений физич. понятий, как якобы условных,– законам. Но определение понятия имеет смысл лишь постольку, поскольку ему соответствует нечто в действительности. А утверждение о существовании этого "нечто" выражает соответствующий , так что реальные определения и законы всегда взаимосвязаны. Остающаяся же степень условности не больше, чем условный единиц измерения.

3. Зачастую сущность О. т. видят не столько в представлениях о структуре пространства-времени, сколько в отнесении явлений к системам отсчета; гл. отличие общей О. т. от частной усматривают в том, что в ней допускаются любые системы отсчета и что все они равноправны, т.е. выполняется т.н. "общий принцип относительности". Утверждают, в частности, равноправность систем Коперника и Птолемея. Этот общий принцип относительности отождествляется с "принципом общей ковариантности", состоящим в требовании, чтобы общие законы выражались в форме, верной для любых пространств.-врем. координат. Эти взгляды ошибочны. Общая О. т. отличается от частной не общностью "допускаемых" координат, а представлениями о структуре (метрике) пространства-времени. Всякая теория "допускает" любые координаты (стоит лишь подставить вместо координат, в к-рых первоначально написаны уравнения теории, произвольные функции других возможных координат). При этом уравнения будут содержать величины, характеризующие ту или иную координатную систему (в О.т. – это составляющие gik метрич. тензора), и будут соответственно преобразовываться при переходе от одной системы к другой. Отсюда название "ковариантность" – сопреобразуемость. Т.о., ковариантность есть всегда выполнимое математич. требование, к-рое применимо и в общей, и в частной О. т., и в классич. теории. Принцип же относительности математически сводится к тому, что в системах отсчета, к к-рым он относится, уравнения не содержат величин, различающих эти системы, т.е. уравнения инвариантны, а не просто ковариантны. Так, согласно "частному" принципу относительности, уравнения в инерциальных системах не содержат их скоростей. Но уравнения, напр., во вращающейся системе содержат ее угловую скорость, т.е. законы физич. явлений в системах, вращающихся с разными скоростями, различны, что обнаруживается на опыте. Поэтому утверждение о равноправности системы Коперника (невращающейся) и Птолемея (вращающейся) неверно независимо от какой бы то ни было теории, т.к. противоречит опытным фактам. То же, что любые координаты пригодны для описания явлений, есть тривиальность, очевидная и без О. т. Предполагаемая в ОТО сложность структуры пространства-времени приводит к тому, что, вообще говоря, не существует строго равноправных систем отсчета (координат), тогда как в частной О. т. инерциальные системы равноправны.

Математически доказывается, что в пространстве-времени с к.-л. метрикой (псевдоримановой, как в ОТО) вообще невозможно равноправие системы координат более , чем в частной О.т., т.е. в этом смысле (а не в смысле ковариантности) невозможен никакой принцип относительности, более общий, чем частный. Считать все системы координат равноправными можно, если отвлечься от метрики, рассматривая ее не как неотъемлемо присущую пространству-времени, а как физическое поле в нем. В отвлечении от метрики пространство-время оказывается просто четырехмерным (топологич.) многообразием и в нем все координаты действительно равноправны просто потому, что без метрики нет никаких оснований для их неравноправности. В частности, без метрики нельзя определить скорость, ускорение и пр., так что сами понятия ускоренной или неускоренной системы теряют смысл. Метрика при этой т.зр. входит в спец. физич. условия протекания явлений. Но если в двух системах все условия, включая и метрику, одинаковы, то, конечно, явления должны течь одинаково. Т.о., равноправность любых систем – общий принцип относительности – оказывается логич. следствием отвлечения пространства-времени от метрики и совпадает с возможностью одинаково пользоваться любыми координатами, т.е. с "принципом общей ковариантности". Но т.к. это возможно в любой теории, то "общий принцип относительности", отождествленный с "принципом ковариантности", не является специфич. чертой ОТО и как физич. закон не выражает ничего, кроме того, что пространство-время есть четырехмерное многообразие, что одинаково признается и в частной О. т. и в классич. теории. Но в двух последних теориях структура пространства-времени фиксирована и существуют естественно связанные с ней системы отсчета (инерциальные). Поэтому ни отвлекаться от метрики, ни вводить общие координаты в них нет надобности, хотя это и возможно. В ОТО же метрика пространства-времени различна в разных условиях, так что выделить системы координат, преимущественные при любых условиях, невозможно. Поэтому ОТО и формулируется в произвольных координатах, в обще-ковариантной форме, и пространство-время в ней рассматривается без фиксированной метрики. Но это не особый физич. принцип теории, а математич. прием ее формулировки. Смешение этого приема с самим физич. содержанием ОТО связано с использованием координат, из-за чего абсолютное – не зависящее от системы координат – сплетается с относительным – зависящим от нее (так, gik определяют метрику как нечто независимое от координат, но сами зависят от них). Обобщение принципа относительности видят в т.н. принципе эквивалентности, согласно к-рому ускоренная система равноправна системе, покоящейся в соответствующем поле тяготения: силы инерции в первой эквивалентны силам тяготения во второй. Но это верно не для любых систем и имеет смысл лишь с т.зр. классич. теории, в ОТО же, строго говоря, теряет смысл. Поле тяготения, как нечто абсолютное, есть поле "кривизны" пространства-времени; то же, что формально играет роль "сил", зависит от системы координат и по чисто математич. теореме может быть всегда исключено вдоль любой "мировой линии". Т.о., послужив Эйнштейну при обосновании ОТО, принцип эквивалентности как бы растворился в ее осн. положениях. Сплетение абсолютного и относительного обнаруживается еще в вопросе об энергии поля тяготения. Величины, характеризующие ее плотность, всегда можно обратить в нуль в данной точке при подходящем выборе координат, т.е. это не есть абс. физич. величины. В связи с этим возникают трудности в формулировке закона сохранения энергии, дискуссии энергии поля и излучения гравитац. волн. Заранее отделить абсолютное (прежде всего саму по себе структуру пространства-времени) от относительного можно при соответствующей математич. формулировке теории, но пока это не осуществлено в полном объеме. При всех условиях только ясное того, что суть О. т. состоит в представлении о структуре пространства-времени, а не в выборе тех или иных координат, позволяет верно понять ее.

О. т. и ф и л о с о ф и я. О. т. преобразовала представления о мироздании и внесла существенно новое в понимание таких категорий, как пространство, время, движение, энергия и др. Возникновение и развитие О. т. неразрывно связано с рядом гносеологич. проблем: определение осн. физич. понятий, относительное и абсолютное и др. В связи с последним на понимание О.т. оказала заметное влияние субъективно-идеалистич. , т.к. физики не владели материалистич. диалектикой. Сам Эйнштейн, руководствуясь в основном материалистич. методологией, не избежал этого влияния. В результате вместе с критикой старых понятий появились и укоренились указ. неверные толкования осн. понятий О.т., недооценка выявленного Минковским содержания О.т. как теории абс. пространства-времени. Представители метафизич. материализма (хотя нек-рые из них и выступали якобы от лица марксистской философии) тоже не могли дать верного толкования О.т. и, критикуя , нападали на самую О.т. Верное понимание О.т. с позиций диалектич. материализма было развито сов. учеными, особенно В. А. Фоком, давшим первое систематич. изложение О.т. с этих позиций.

Важнейшими филос. выводами из О.т. являются: 1) подтверждение и развитие учения диалектич. материализма о пространстве и времени как формах существования материи; 2) соединение пространства и времени в единую форму существования материи – пространство-время, так что самая формула: "Пространство и время суть формы существования материи" должна быть заменена новой – пространство-время есть существования материи, в к-рой пространство и время суть ее относит, стороны; 3) установление единства пространств.-врем. и причинно-следств. структуры мира; 4) открытие (в ОТО) конкретной зависимости структуры пространства-времени от распределения и движения материи; 5) установив неразрывную связь массы и энергии, взаимную обусловленность структуры пространства-времени – поля тяготения и движения тел в этом поле, О. т. углубляет представление о неразрывности материи, ее движения и форм существования (так, масса – " косности материи" – оказывается вместе с тем мерой энергии, мерой "активности материи", мерой наличного или возможного ее движения); 6) открыв относительность разнообразных характеристик тел и явлений как проявление более общих безотносит: св-в, О.т. раскрывает объективную диалектику абсолютного и относительного, св-в и отношений; 7) ОТО открыла новые возможности для научно обоснованных суждений о строении и развитии Вселенной; 8) и критич. пересмотр ряда осн. понятий физики, неразрывно связанный с возникновением и развитием О.т., вносит существ. вклад в методологию науки и теорию познания. В создании О.т. Эйнштейн руководствовался, в частности, следующим филос. принципом: всякое понятие имеет смысл лишь постольку, поскольку оно отражает нечто , доступное, хотя бы в принципе, эксперименту. На этой основе было пересмотрено понятие одновременности, отвергнуты ньютоновские абс. пространство и время. Данные Эйнштейном формулировки этого принципа недостаточно подчеркивают его материалистич. содержание, и это создало почву для его толкования в духе чистого операционализма, хотя в сущности речь идет о материалистич. положении (ср. "Тезисы о Фейербахе" Маркса). О.т. в наст. время прочно установлена и пока нет достаточных оснований для новой, более глубокой теории пространства-времени, хотя попытки наметить такую теорию в связи с квантовой физикой делались и делаются.

А. Александров. Новосибирск.

Современные проблемы О. т. Если в отношении смысла и содержания спец. О. т. выработалась довольно определ. т. зр., разделяемая значит. большинством ученых, то ОТО продолжает интенсивно развиваться, и до сих пор существует мнений почти по всем ее осн. вопросам. Среди этих вопросов центр. место в наст. время занимает проблема энергии гравитац. поля. Согласно ОТО, поле тяготения проявляется в искривлении и только в искривлении пространства-времени. Величины, описывающие энергию и гравитац. поля, не имеют в осн. уравнении ОТО тензорного характера; это положение истолковывается как локализации гравитац. поля, в связи с чем возникает философски важная проблема природы гравитац. поля – представляет оно собой материи или тождественно с пространств.-врем, характеристиками материи, не обладая субстанциональностью. Несмотря на большое предложенных вариантов локализации поля гравитации, проблема энергии еще не может считаться решенной.

С проблемой энергии тесно связана проблема гравитац. волн: большинство ученых исходит из признания реальности гравитац. излучения, несущего энергию, но нек-рые указывают на принципиальные трудности, связанные с нелокализуемостью энергии поля тяготения.

Поскольку гравитац. излучение может быть порождено или уничтожено простым преобразованием системы координат, его нельзя считать, по их мнению, реальным (Л. Инфельд). Ряд исследователей пытается решить задачу в нек-рых спец. координатах, но подавляющее большинство ученых считает, что привилегированных систем координат в ОТО ввести нельзя без нарушения общего принципа относительности. Исключение в этом отношении представляет В. А. Фока, к-рый, подвергнув пересмотру осн. принципы ОТО в том виде, как они были сформулированы Эйнштейном, защищает привилегированный гармонич. координат (см. "Теория пространства, времени и тяготения", 1961, с. 468–76).

Существует ряд попыток разрешить трудности, связанные с нелокализуемостью поля тяготения, путем видоизменения математич. аппарата теории. Нек-рые авторы вводят в рассмотрение наряду с искривленным римановым пространством плоское пространство Минковского (см. П. И. Пугачев, Использование плоского пространства в теории гравитац. поля, в журн.: "Изв. ВУЗов. Физика", 1959, No 6, с. 152). Одна из наиболее удачных попыток в этом направлении была осуществлена Ю. А. Рыловым, к-рый сумел, не нарушая принципа эквивалентности, перейти от описания поля тяготения в римановом пространстве к его описанию в плоском пространстве, касающемся риманова пространства в нек-рой опорной точке (см. "Об относит. локализации гравитац. поля", в журн.: "Вестник МГУ", сер. 3, 1962, No 5, с. 70, и его же, "Нормальные координаты и общий принцип относительности" – там же, 1963, No 3, с. 55).

Широкой распространенностью пользуется т.н. тетрадная формулировка ОТО, к-рая отличается от обычной (метрической) тем, что осн. средством описания гравитац. поля в ней служат не 10 метрич. тензора gμν , а 16 компонент поля тетрад (тетрада представляет собой совокупность четырех ортогональных друг другу единичных векторов, заданных в каждой точке риманова пространства). Наличие дополнительных 6 степеней свободы по сравнению с метрич. формулировкой позволяет надеяться, что трудности с нелокализуемостью энергии гравитац. поля могут быть в ней преодолены (см. С. Pellegrini, J. Plebański, Tetrad fields and gravitational fields, Kbh., 1963).

Все эти подходы, связанные с модификацией математич. аппарата ОТО, ставят исключительно важную методологич. проблему исследования зависимости физич. содержания теории от конкретного вида ее математич. аппарата.

Ряд проблем связан с попытками распространения идей ОТО на изучение др. видов полей, а не только гравитационного. Среди них в первую очередь должны быть отмечены т.н. единые теории, связанные с попытками истолкования электромагнитного и других полей в геометризованном духе (см. М. А. Тоннела, Основы электромагнетизма и теории относительности, М., 1962, с. 368; П. Г. Бергман, Введение в теорию относительности, М., 1947, с. 325). Одна из последних попыток в этом направлении принадлежит Дж. Уилеру. Его "геометродинамика" вводит "геонную" для массы, построенную из полей, имеющих нулевую массу покоя, и дает чисто геометрич. модель для электричества в рамках топологии многосвязного пространства (см. Дж. Уилер, Гравитация, нейтрино и Вселенная, пер. с англ., М., 1962). Многочисл. проблемы связаны с попытками квантования гравитац. поля, приводящими к существованию гравитонов – частиц со спином 2, являющихся переносчиками гравитац. взаимодействия.

Значит. часть работ посвящена применению идей ОТО в космологии и астрофизике (см. . Б. Зельдович и И. Д. Новиков, Релятивистская астрофизика в журн.: "Успехи физ. наук",1964, т. 84, с. 377; 1965, т. 86, с. 447), в частности попыткам связать космологич. характеристики с характеристиками микромира.

Лит.: Эддингтон Α., Теория относительности, пер. с англ., Л.–М., 1934; Лоренц Г. А. [и др.], Принцип относительности. Сборник работ классиков релятивизма, [М.–Л.], 1935; Паули В., Теория относительности, пер. с нем., М.–Л., 1947; Мандельштам Л. И., Лекции по физич. основам теории относительности (1933–1934 гг.), Полн. собр. трудов, т. 5, М., 1950; Эйнштейн Α., Сущность теории относительности, пер. с англ., М., 1955; Вавилов С. И., Экспериментальные основания теории относительности, Собр. соч., т. 4, М., 1956; Александров А. Д., Теория относительности как теория абс. пространства-времени, в кн.: Филос. вопросы совр. физики, М., 1959; Зельманов А. Л., К постановке вопроса о бесконечности пространства в общей теории относительности, "ДАН СССР", 1959, т. 124, No 5; Фок В. Α., Теория пространства, времени и тяготения, 2 изд., М., 1961; Петров А. З., Пространства Эйнштейна, М., 1961; Мак-Витти Г. К., Общая теория относительности и , пер. с англ., М., 1961; Новейшие проблемы гравитации. Сб. ст., М., 1961; Вебер Дж., Общая теория относительности и гравитац. волны, пер. с англ., М., 1962; Синг Дж. Л., Общая теория относительности, пер. с англ., М., 1963; Борн М., Эйнштейновская теория относительности, пер. с англ., М., 1964; Эйнштейн Α., Инфельд Л., Эволюция физики, пер. с англ., 3 изд., М., 1965; Поликаров Α., Относительность и кванты, пер. с болг., М., 1966; Robb Α. Α., The absolute relations of time and space, Camb., 1921; Reichenbach Η., The philosophy of space and time, N. Y., ; Grünbaum Α., Philosophical problems of space and time, , 1964.

Философская Энциклопедия. В 5-х т. - М.: Советская энциклопедия . Под редакцией Ф. В. Константинова . 1960-1970 .


  • Большой Энциклопедический словарь Большая советская энциклопедия - физическая теория, рассматривающая пространственно временные свойства физич. процессов. Эти свойства являются общими для всех физич. процессов, поэтому их часто наз. просто свойствами пространства времени. Свойства пространства времени зависят от … Математическая энциклопедия
  • Эйнштейна, физ. теория, рассматривающая пространственно временные свойства физ. процессов. Т. к. закономерности, устанавливаемые О. т., общие для всех физ. процессов, то обычно о них говорят просто как о свойствах пространства времени (п. в.).… … Естествознание. Энциклопедический словарь

    Физ. теория пространства и времени (специальная О. т.), также тяготения (общая О. т.). Специальная О. т. осн. на двух постулатах Эйнштейна: 1) в любых инерциальных системах отсчёта (ИСО) все физ. явления (механич., электромагнитвые и др.)… … Большой энциклопедический политехнический словарь, А.С. Эддингтон. Эта книга будет изготовлена в соответствии с Вашим заказом по технологии Print-on-Demand. Книга «Теория относительности и ее влияние на научную мысль» А. С. Эддингтона [Эддингтон А. С.]…


Пространство и время - всеобщие формы бытия материи. Пространство - протяжённость, сосуществование вещей, время - длительность. На уровне понятий протяжённость и длительность выражаются в абстрагируемых от них признаках - измерениях. Пространство характеризуется двумя измерениями, время одним: оно течёт от прошлого к настоящему и к будущему. Одномерность времени связана, поэтому с однонаправленностью и необратимостью. Пространству свойственна обратимость, движение возможно в прямом и обратном направлении. Пространство и время обладают однородностью, различные точки пространства одинаково тождественны, также и моменты времени. Пространство изотропно, т.е. все направления в пространстве равноценны, одинаковы. Пространство и время - внутренние формы бытия материи, объективные формы (с позиции научного материализма). Пространство и время - две противоположные, взаимосвязанные и взаимодополняющие формы бытия материи. Сосуществующие в пространстве вещи, могут сосуществовать во времени и существующие во времени вещи образуют пространство... . Любая из основных форм бытия, таким образом, выступает в качестве условия другого. ... физические представления о пространстве и времени связаны с теорией Эйнштейна. Теория относительности основывается на принципах: - Постоянства скорости света в пустоте. - Относительности. На их основе Эйнштейн разработал теорию физического пространства и времени, где пространство и время зависимы от движения физических тел по мере приближения к скорости света. Эйнштейн открыл свойство пространство и времени - быть объективно различными в различных физических системах. Общая теория относительности ввела представление о взаимосвязи и взаимодополняемости пространства и времени. Общая теория относительности исходит из признания тяготения, которое определяет свойства пространства и времени. С позиций общей теории относительности протяжённость и длительность зависят от интенсивности гравитации, чем интенсивнее поле тяготения, тем меньше протяжённость и медленнее течёт время. Общая теория относительности ввела понятие о кривизне пространства. - Теория относительности подтвердила диалектико-материалистическое понимание пространства и времени, их неразрывные связи друг с другом и материей. - Теория относительности дала толчок и материал для существенного углубления научно философской концепции пространства, времени, движения и материи. - В науку и философию входит понятие о различных формах пространства и времени.

22. Движение - способ существования материи. Движение и покой. Критика энергетизма.

Наряду с пространством и временем, способом существования материи являются движение и развитие. Движение есть абстрактная сторона развития. Движение - изменение вообще. Все вещи обладают способностью изменения, перехода из одного состояния в другое. Движение - перемена места в пространстве, изменение физических полей, химического состава, структуры и функций организмов, рост знаний и т.д. движение может быть определено как снятие абстрактного тождества предмета с самим собой. Любая вещь, оставаясь до какого то предела самой собой, в то же время непрерывно меняется, перестаёт быть тождественной себе. Вне такого непрерывного движения вещь не существует и не может мыслиться. Поэтому в марксистской диалектике понятие абсолютного покоя рассматривается как несостоятельное. Движение и покой. Движение предполагает материальный субстрат, который изменяется. Это значит, что движение должно быть связано с чем то сохраняющимся, относительно покоящимся. Если абсолютизировать движение и полностью отрицать покой, это приводит к тому, что вещь, как носитель движенья, растворяется в чистом движении, что делает бессмысленным и само понятие движения. Покой и движение не являются полноправными. Покой выступает как момент движения. Поэтому диалектика рассматривает движение как абсолютное, а покой как относительный. Покой относителен в двух смыслах: 1) В пределах каждого покоящегося происходят непрерывные изменения, подрывающие покой изнутри. 2) Всякое состояние покоя рано или поздно сменяется новым состоянием относительного покоя. Так как всякое движение включает в себя моменты покоя, но не сводится к нему, понятие движения получает широкий и узкий смысл: - В широком смысле движение целостный процесс, включающий моменты покоя и собственно движения. - В узком смысле движение за вычетом покоя. Материя и движение неразрывно связаны. Как нет материи без движения, так нет движения без материи. Движение принадлежит материи, являясь её способом существования, свойством материи. С другой стороны, движение существует как изменение чего-либо, некоторого субстрата. Само понятие движения теряет смысл, если его оторвать от понятия движущегося тела. Попытку оторвать движение от материи предпринял в начале двадцатого века Освальд (махизм). Он полагал, что противоположность материализма и идеализма может быть преодолена, если понятия материи и духа заменить нейтральным понятием энергии, но это просто изменение терминологии. Освальд фактически рассматривал энергию, как существующую объективно, вне сознания. С появлением соотношения массы и энергии, энергетизм стремился доказать, что оно свидетельствует о превращении материи в энергию. Однако эта формула фиксировала не превращение материи в энергию, а пропорциональность энергии другому физическому свойству - массе.

Теория относительности тесно связана с философией. Прежде всего следует отметить, что основой ее создания стал глубокий философский анализ А. Эйнштейном понятий пространства и времени.

Кроме того, просмотр теорией относительности пространственно-временных представлений, господствовавших в классической физике, влияние на развитие философской мысли.

Одной из центральных философских проблем специальной теории относительности является исследование основ релятивистских эффектов, таких как лоренцивське сокращения длин, замедление времени, относительность одновременности. Дискуссия по этим вопросам способствовала развитию теории относительности. С философской точки зрения наиболее интересным является вопрос об объективной природе относительности. Ньютоновская механика придерживалась представления об инвариантности пространства и времени. С ее точки зрения длины отрезков или твердых стержней и временные интервалы не изменяются при переходе от одной инерциальной системы к другой, например от такой, что находится в состоянии покоя, к такой, что движется. Математическая инвариантность получается как следствие преобразований Галилея, в отношении которых инвариантными являются сами законы классической механики. Однако было установлено, что преобразования Галилея не универсальны. Во-первых, их не удовлетворяли уравнения Максвелла, которые оказались неинвариантны относительно них. Во-вторых, выводы, вытекающие из преобразований Лоренца, противоречили результатам опыта Майкельсона. Этот опыт свидетельствовал, что классический закон сложения скоростей, связан с преобразованиями Галилея, не выполняется, а именно: скорость света не зависит от движения источника.

Противоречие, существовавшее между принципом относительности Галилея, с одной стороны, электродинамике Максвелла и опытом Майкельсона, с другой, преодолел Эйнштейн. Он обобщил принцип относительности, соединив две, казалось бы, взаимоисключающие идеи - идею инвариантности физических законов и принцип постоянства скорости света. Новый принцип относительности утверждал, что физические законы являются инвариантными, но не относительно преобразований Галилея, а относительно преобразований Лоренца. С преобразований Лоренца непосредственно вытекала инвариантность длины и временных интервалов, а именно: длины стержней и временные интервалы должны иметь разные значения при переходе от одной инерциальной системы к другой.

Сам по себе факт вывода из преобразований Лоренца релятивистских кинематических эффектов - неинвариантности пространства и времени - еще не раскрывает их сути. Этот вывод является чисто математическим способом, который не дает ответа на вопрос о содержании релятивистской кинематики.

Исторически первой интерпретацией неинвариантности пространства и времени была трактовка, предложенная Лоренцом. Вывод о сокращении длин стержней, движущихся было сделано им для согласования теории с отрицательным результатом опыта Майкельсона по определению скорости света относительно эфира.

Лоренцивське трактовка сокращение оказалось неудовлетворительным. Его недостаток заключался в том, что оно опиралось на понятие эфира, которое было внутренне противоречивым. По Лоренцом, эфир определялся как привилегированная система отсчета, относительно которой сокращаются длины стержней, движущихся.

Теория относительности с самого начала исключает понятие эфира. Для нее эфир как особая система отсчета не существует вследствие принципа относительности. Релятивистские эффекты - сокращение длин стержней и замедление времени - является следствием самой структуры пространства и времени. Характерной особенностью релятивистского трактовка сокращения длин и замедления времени, что отличает ее от лоренцивськои, является рассмотрение этих эффектов как обратных. Большой интерес для понимания объективной сути относительности пространства составляет введена А. Эйнштейном различие между геометрической и кинематической формами тела. Если тело находится в состоянии покоя, обе эти формы идентичны, а когда оно начинает двигаться, эти формы расщепляются. В собственной системе отсчета тело характеризуется конфигурацией точек, составляющих его геометрическую форму. В системах отсчета, относительно которых тело движется, оно имеет кинематическую форму. К тому же обе эти формы объективно присущие предмету и ни одна из них не является «более реальной».

Интерпретация теории относительности с помощью подвижных систем отсчета с установленными в них измерительными приборами не является единственной. Г. Минковский показал, что теория относительности предполагает чисто геометрическое построение. Ее положение реализуется в четырехмерном псевдоевклидовому пространстве, три измерения которого имеют пространственный характер в обычном понимании этого слова, а один соответствует времени. В пространстве Минковского действует группа преобразований Лоренца.

Особенность геометрического изображения теории относительности состоит в том, что на первый план выдвигается не относительность, а абсолютность в пространственно-временных отношениях. Однако абсолютное здесь не оторвано от относительного, а связанное с ним. Абсолютный интервал выражается через пространственную и временную составляющие, являются относительными.

Геометрическая интерпретация теории относительности немало бесспорных позитивных моментов. Все релятивистские эффекты здесь получают наглядное обнаружения. С философской точки зрения значение этой интерпретации состоит в том, что она выясняет диалектическая взаимосвязь относительного и абсолютного. Выше уже обращалось внимание на то, что теория относительности Эйнштейна согласуется с материализмом. Следует отметить, что сам геометрический подход к теории относительности еще не означает ее материалистической интерпретации. Для того чтобы получить такую интерпретацию, надо сделать материалистические предположение, выходящие за пределы геометрии и отражают материалистическое решение основного вопроса философии.

Специальная теория относительности подготовила почву для создания общей теории относительности - эйнштейновской теории тяготения, еще теснее связала свойства пространства и времени с материей.

Теория относительности сыграла важную роль в развитии теоретической физики. Следует отметить, что наличие огромных запасов энергии в ядре атома была доказана именно на основе открытого А. Эйнштейном взаимосвязи массы и энергии, что стимулировало экспериментальные и теоретические открытия в области физики атомного ядра. Последовательное применение идей теории относительности в различных сферах физики выдвинуло ряд новых важных, еще не решенных проблем. Исследование их способствует прогрессу науки, углубляет наши знания о свойствах и закономерностях реального мира. Познавательное значение теории относительности бесспорно. Касаясь важнейших проблем пространства, времени и движения, энергии и массы, теория относительности играет значительную роль в формировании научного, материалистического мировоззрения, а также правильного научного представления о свойствах и закономерностях окружающего мира.

Иногда возникают противоречивые рассуждения относительно понимания тех или иных выводов теории относительности, связанные с наличием противоречий между ее названием и содержанием. Название «теория относительности * бы свидетельствует, что содержанием теории является« относительность ». Относительность же, положенную в основу, не всегда отличают от релятивизма, т.е. учение об относительности наших знаний, относительность в смысле субъективизма. Такое понимание физической теории импонирует позитивистам и философским идеалистам. Они видят в теории относительности пример физической теории, что противоречит материализма. Отсюда делается обобщающий вывод о том, что современная физика несовместима с диалектическим материализмом. В связи с этим некоторые физики вводят понятие «физическая относительность», которая отличается от релятивизма. Они изымают из теории субъект, заменяя его измерительным прибором, не замечая при этом, что любой измерительный прибор только вместе с субъектом приобретает черты, которые принципиально отличаются от всех других исследуемых объектов материального мира. Эти недоразумения отпадают, если теории относительности подойти как к физической теории с ее определенным конкретным содержанием. Содержанием теории относительности является физическая теория пространства и времени, которая учитывает существующую между ними взаимосвязь геометрического характера. При этом оказывается, что «относительность» носит подчиненный характер, иногда даже сугубо иллюстративный.

Теория относительности, как и любая физическая теория, правильно отражает объективные закономерности природы и глубоко материалистической. Теория относительности исходит из того, что физика изучает конкретные свойства материи, которая объективно существует вне нашего сознания и независимо от нас. Основные положения теории относительности ярко отражают диалектический характер закономерностей реального мира, диалектику природы.

Министерство Образования и Науки РФ

ФГБОУ ВПО

УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ

ГОРНЫЙ УНИВЕРСИТЕТ

Кафедра философии и культурологии

Реферат на тему “Философские проблемы теории относительности”

Преподаватель: Гвоздецкий А.В. Студент: Паршаков А.В. Группа: ТГР 12-1

Екатеринбург

Введение…………………………………………..……………………………….3

Физика и философия. Теория относительности…………………………..…….4

Заключение……………………………………………………………………… 15

Список используемой литературы……………………………………………...16

Введение.

Темой для моего реферата я выбрал тему, связывающую, казалось бы, на первый взгляд, две разные и несовместимые науки: философию, и физику, а точнее, теорию относительности. Еще в конце XIX начале XX веков был сделан ряд крупнейших открытий, с которых началась революция в физике. Она привела к пересмотру практически всех классических теорий в физике. Возможно, одной из самых крупных по значимости и сыгравших наиболее важную роль в становлении современной физики наряду с квантовой теорией была теория относительности.

Теория относительности всегда играла в современной физике особо важную роль. В ней впервые была показана необходимость периодического изменения основополагающих принципов физики. Поэтому обсуждение тех проблем, которые были подняты и отчасти решены теорией относительности, необходимы для рассмотрения философских аспектов современной физики. В известном смысле можно сказать, что создание теории относительности - в противоположность квантовой теории - потребовало сравнительно немного времени с момента окончательного осознания трудностей, о которых в данном случае шла речь, до их разрешения.

Физика и философия. Теория относительности.

Повторение опыта Майкельсона Морлеем и Миллером в 1904 году явилось первым надежным доказательством невозможности обнаружить поступательное движение Земли с помощью оптических методов, а решающая работа Эйнштейна появилась менее чем два года спустя. С другой стороны, опыт Морлея и Миллера и работа Эйнштейна явились все-таки, пожалуй, лишь последними фазами развития, которое началось гораздо ранее и которое, по-видимому, можно связать с проблемой "электродинамики движущихся сред".

Электродинамика движущихся сред оказалась важным разделом физики и техники. Серьезная трудность выявилась в этой области только тогда, когда Максвелл вскрыл электромагнитную природу световых волн. Эти волны одним отличаются от других, уже известных ранее волн, например от звуковых волн. Они могут распространяться в пустом пространстве. Если звонок заставить звучать в сосуде, из которого откачан воздух, то звук не достигает пространства вне сосуда. Свет же свободно проходит сквозь безвоздушное пространство. Поэтому предположили, что световые волны можно рассматривать как упругие волны в очень легкой субстанции, называемой эфиром, которую нельзя ни видеть, ни ощущать, но которая заполняет как безвоздушное пространство, так и пространство, занятое другим веществом. Мысль о том, что электромагнитные волны обладают своей собственной реальностью, независимой ни от каких тел, в то время еще не приходила физикам в голову. Так как это вещество - эфир - могло проникать во все другие тела, то встал вопрос: что происходит, если тело приведено в движение? Принимает ли эфир участие в этом движении, и если да, то как распространяется световая волна в этом движущемся эфире?

Эксперименты, которые дают ответ на этот вопрос, трудны по следующей причине: скорости движущихся тел обычно чрезвычайно малы по сравнению со скоростью света. Поэтому движение этих тел может вызвать только очень незначительные эффекты. Электронная теория, развитая Лоренцом в 1895 году, дала удовлетворительное описание этих эффектов "первого порядка". Но эксперимент Майкельсона, Морлея и Миллера создал новую ситуацию: чтобы получить большие эффекты, а тем самым и более точные результаты, казалось целесообразным экспериментировать с телами, движущимися очень быстро. Вычисление эффекта, который следует ожидать, показывает, что он в данном случае должен быть очень малым, так как оказывается пропорциональным квадрату отношения скорости Земли к скорости света. Поэтому необходимо поставить точные эксперименты по интерференции двух световых пучков, один из которых направлен параллельно, а другой - перпендикулярно к направлению движения Земли. Первый эксперимент такого рода, выполненный Майкельсоном в 1881 году, был недостаточно точен. Но и последующие повторные эксперименты не обнаружили ни малейших следов ожидаемого эффекта. Такого рода окончательным доказательством того, что эффект ожидаемого порядка величины не имеет места, являются в особенности эксперименты Морлея и Миллера 1904 года.

Их результат казался сначала непонятным, но он имеет отношение и к другому вопросу, незадолго до этого уже осаждавшемуся физиками. В Ньютоновской механике справедлив определенный принцип относительности, который можно характеризовать следующими словами: если в определенной системе отсчета законы Ньютоновской механики выполняются для механического движения тела, в таком случае это имеет место и в любой другой системе отсчета, движущейся относительно первой системы равномерно и прямолинейно. Равномерное и прямолинейное движение не вызывает, таким образом, никаких механических эффектов в этой системе, и поэтому эти эффекты не могут служить средством обнаружения такого движения.

Подобного рода принцип относительности, как казалось физикам, не мог быть справедлив в оптике и электродинамике. Ибо если первая система покоится относительно эфира, то движущаяся система, напротив, не находится в состоянии покоя, и отсюда следует, что движение этой второй системы относительно эфира можно наблюдать благодаря эффектам того рода, которые были исследованы Майкельсоном. Отрицательный результат опыта Морлея и Миллера 1904 года позволял поэтому снова воскресить идею о том, что принцип относительности такого рода все-таки, вероятно, мог быть также справедлив в электродинамике, как и ранее в Ньютоновской механике.

С другой стороны, имелся старый опыт Физо 1851 года, который, казалось, непосредственно противоречил этому принципу относительности. Физо исследовал скорость света в движущейся жидкости. Если бы принцип относительности был справедлив, то суммарная скорость света в движущейся жидкости должна была бы быть равной сумме скорости жидкости и скорости света в покоящейся жидкости. Однако это было не так. Опыт Физо показал, что суммарная скорость была несколько меньше, чем указанная сумма.

Решающий шаг был сделан в 1905 году Эйнштейном, истолковавшим кажущееся время в преобразованиях Лоренца как время реальное и исключившим из рассмотрения время, которое Лоренц называл "истинным". Это означало изменение оснований физики - совершенно неожиданное и радикальное изменение, для которого именно и была необходима смелость молодого и революционного гения. Чтобы сделать этот шаг в плане математического описания природы, надо было лишь применить к опыту преобразование Лоренца непротиворечивым образом. Однако благодаря новому истолкованию этого преобразования изменялись представления физиков о структуре пространства и времени, и многие проблемы физики предстали поэтому в новом свете Эфирная субстанция, например, оказывалась ненужной и могла быть просто вычеркнута из учебников физики. На самом деле принимать во внимание такую субстанцию больше не имеет смысла и много проще говорить, что световые волны распространяются в пустом пространстве и что электромагнитные поля обладают своей собственной реальностью и могут существовать в пустом пространстве.

Решающее изменение, однако, затрагивает структуру пространства и времени. Очень трудно описать это изменение словами обычного языка без применения математики, так как обычные слова "пространство" и "время" уже относятся к структуре пространства и времени, представляющей собой идеализацию и упрощение действительной структуры. Несмотря на это, необходимо попытаться описать новую структуру, и, пожалуй, это можно сделать следующим образом. Когда мы употребляем слово "прошлое", то тем самым имеем в виду все те события, о которых мы, по крайней мере в принципе, можем что-то знать и получить какие-то сведения. Подобным же образом слово "будущее" охватывает все те события, на которые мы, по крайней мере в принципе, еще можем воздействовать, которые мы можем как-то пытаться изменить или воспрепятствовать их свершению. Хотя сразу трудно утверждать, почему эти определения слов "прошлое" и "будущее" следует считать особенно целесообразными, но можно легко показать, что они в самом деле очень точно соответствуют обычному употреблению этих выражений. Если их употребляют подобным образом, то, как показывают результаты многих экспериментов, область событий, относимых к будущему или прошлому, не зависит от состояния движения или других свойств наблюдателя. На более строгом математическом языке можно сказать, что введенное определение инвариантно относительно перемещений наблюдателя. Оно справедливо как в Ньютоновской механике, так и в теории относительности Эйнштейна.

Но здесь возникает существенное различие: в классической теории мы принимаем, что будущее и прошлое отделены друг от друга бесконечно малым интервалом времени, который можно назвать настоящим мгновением. В теории же относительности мы видели, что дело обстоит несколько иначе. Будущее отделено от прошлого конечным интервалом времени, длительность которого зависит от расстояния до наблюдателя. Какое угодно воздействие может распространяться только со скоростью, которая меньше или равна скорости распространения света. Поэтому наблюдатель в данное мгновение не может ни знать, ни оказать влияние на событие, происшедшее в некоторой удаленной точке в промежутке между двумя характеристическими моментами времени. Первый момент - мгновение, в которое должен быть послан из места события световой сигнал, который достигнет наблюдателя в момент наблюдения. Другой момент - мгновение, в которое световой сигнал, посланный наблюдателем в момент наблюдения, достигает места события. Весь конечный интервал времени между обоими этими мгновениями может быть назван для наблюдателя в данный момент наблюдения "настоящим". Ибо любое событие, происшедшее в этот интервал времени, не может в момент выполнения наблюдения ни стать известным наблюдателю, ни испытать какое-либо воздействие последнего, и именно так было определено понятие "настоящее". Всякое событие, имеющее место между обоими характеристическими моментами времени, может быть названо "одновременным с актом наблюдения".

Использование выражения "может быть названо" уже указывает на двусмысленность слова "одновременно", объясняющуюся тем, что слово "одновременно" возникло из опыта повседневной жизни, в пределах которого скорость света можно считать практически бесконечно большой. На самом же деле слово "одновременно" может быть определено в физике несколько иначе, и Эйнштейн использовал в своих работах это второе определение "одновременности". Если два события в одной и той же точке пространства происходят одновременно, мы говорим, что они совпадают. Это выражение совершенно однозначно. Теперь представим себе три точки в пространстве, лежащие на одной прямой линии таким образом, что средняя точка находится на одном и том же расстоянии от обеих крайних. Если два события в обеих внешних точках происходят в такие моменты времени, что световые сигналы, посланные в момент свершения событий, приходя в среднюю точку, совпадают, то оба события можно определить как "одновременные". Это определение является в данном случае более узким, чем первое. Одно из его важнейших следствий состоит в том, что, когда два события одновременны для одного наблюдателя, они, возможно, не одновременны для другого наблюдателя; это будет иметь место, если второй наблюдатель движется относительно первого. Соотношение между обоими определениями слова "одновременно" можно выразить высказыванием: во всех случаях, когда два события одновременны в первом смысле, можно найти также систему отсчета, в которой они одновременны и во втором смысле. Несколько более наглядно положение вещей в целом можно, пожалуй, изобразить следующим образом: предположим, что спутник, вращающийся вокруг Земли, испускает сигнал, который через некоторый малый промежуток времени принимается станцией наблюдения на Земле. Эта станция наблюдения в ответ на данный сигнал посылает спутнику команду, которую он принимает через некоторый малый промежуток времени. Весь интервал времени между посылкой сигнала и приемом команды можно считать на спутнике, согласно первому определению, одновременным с моментом приема сигнала на Земле. Если на спутнике выбирается какое-либо определенное мгновение из этого интервала, то, хотя это мгновение, вообще говоря, в смысле второго определения, не "одновременно" с моментом приема сигнала на Земле, всегда существует система отсчета, в которой эта одновременность имеет место.

Первое определение слова "одновременно" кажется несколько более соответствующим обычному употреблению этого слова в повседневной жизни, так как вопрос о том, одновременны ли два процесса, в повседневной жизни определенно не зависит от системы отсчета. В обоих же релятивистских определениях понятие одновременности приобрело ту точность, которая совершенно отсутствовала у него в языке повседневной жизни. В квантовой теории физики должны были уже заранее осознать, что понятия классической механики описывают природу недостаточно точно, что квантовые законы ограничивают их применимость и что поэтому при их использовании необходима большая осторожность. В теории относительности физики, напротив, пытались изменить смысл слов классической физики, уточнив эти понятия таким образом, чтобы они точно соответствовали новой, только что познанной ситуации в природе.

50 лет назад, когда была создана теория относительности, гипотеза об эквивалентности массы и энергии революционизировала физику, но экспериментальных доказательств этого закона было тогда очень мало. В наши дни можно во многих экспериментах непосредственно видеть, как элементарные частицы рождаются из кинетической энергии и как такие частицы могут снова исчезнуть, превратившись в излучение. Поэтому ныне превращение энергии в массу и наоборот не представляет собой ничего необыкновенного.

Эквивалентность массы и энергии, кроме своего огромного значения для практической физики, подняла также вопросы, связанные с очень старой философской проблематикой. Различные философские системы прошлого исходили из тезиса, что субстанция, или материя, неуничтожима. Эксперименты, которые проводятся в современной физике, показали, что элементарные частицы, например, позитроны и электроны, могут быть уничтожены и превращены в излучение. Означает ли это, что более старые философские системы тем самым опровергнуты новейшим опытом и что аргументы, выдвигающиеся в этих более ранних системах, должны считаться ложными?

Это было бы, несомненно, несколько преждевременное и неоправданное заключение, ибо понятия "субстанция" и "материя" в античной или средневековой философии нельзя просто отождествлять с понятием "масса" в современной физике. Если наши современные знания выразить на языке более старых философских систем, то можно было бы, например, массу и энергию рассматривать в качестве двух различных форм одной и той же субстанции и, таким образом, сохранить представление о неуничтожимой субстанции.

Гипотетическая субстанция "эфир", игравшая столь важную роль в более ранних истолкованиях теории Максвелла в XIX столетии, как это уже упоминалось выше, была устранена теорией относительности. Это обстоятельство часто выражают также в виде утверждения, что теорией относительности было устранено абсолютное пространство. Но такое утверждение нуждается в некоторых оговорках. Правда, согласно специальной теории относительности, больше нельзя выбрать определенную систему отсчета, относительно которой эфир покоился бы и которая по этой причине заслуживала бы название "абсолютной". Но было бы все же неправильно утверждать, что теперь пространство будто бы потеряло все физические качества. Уравнения движения материальных тел или полей все еще принимают различный вид в "обычной" системе отсчета и в другой системе, равномерно вращающейся относительно "обычной" системы отсчета. Если ограничиваются теорией относительности 1905, 1906 годов, то существование, центробежных сил во вращающейся системе отсчета доказывает, что существуют физические свойства пространства, позволяющие отличить вращающиеся системы от не вращающихся.

В философском плане это не кажется удовлетворительным, и было бы предпочтительнее приписывать физические свойства только физическим объектам, как, например, материальным телам или полям, а не пустому пространству. Однако если ограничиться рассмотрением электромагнитных процессов и механических движений, то наличие этих свойств у пустого пространства следует просто из фактов, которые не могут быть оспорены, например из факта существования центробежной силы.

Решающая фундаментальная гипотеза общей теории относительности - предположение о тождестве тяготеющей и инертной масс. Весьма тщательные измерения показали, что масса тела, определяемая его весом, в точности пропорциональна другой массе, определяемой инерцией тела. Даже самые точные измерения никогда не давали никаких отклонений от этого закона. Если этот закон имеет универсальное значение, то силы тяготения могут быть поставлены в параллель с центробежными или другими силами, возникающими как реакция на инерционные воздействия. Так как центробежные силы должны быть поставлены в связь с физическими свойствами пустого пространства, как это показано выше, то Эйнштейн пришел к гипотезе о том, что силы тяготения также соответствуют свойствам пустого пространства. Это был очень важный шаг, который тотчас же сделал необходимым новый шаг в том же направлении. Мы знаем, что силы тяготения вызываются массами. Поэтому если тяготение связано со свойствами пространства, то эти свойства пространства должны быть порождены массой или испытывать воздействия масс. Центробежные силы во вращающейся системе отсчета, возможно, должны вызываться вращением относительно этой системы весьма удаленных масс вселенной.

Чтобы провести в жизнь программу, намеченную в этих утверждениях, Эйнштейн должен был связать эти основополагающие физические соображения с математической схемой общей геометрии, развитой Риманом. Так как свойства пространства, очевидно, непрерывно меняются с изменением гравитационных полей, то геометрия мира должна быть подобной геометрии искривленных поверхностей, на которых прямые линии евклидовой геометрии должны быть заменены геодезическими линиями, то есть линиями наименьшей длины, и кривизна непрерывно меняется от точки к точке. В качестве окончательного результата Эйнштейн смог предположить в конце концов математическую формулировку соотношения между распределением масс и параметрами, определяющими геометрию. Эта теория правильно отображает общеизвестные факты, характеризующие тяготение. Она в очень хорошем приближении идентична с обычной теорией тяготения и, кроме того, предсказывает некоторые очень интересные эффекты, лежащие как раз на границе возможностей измерительных приборов. К ним относится, например, влияние силы тяготения на излучение.

Лучшим экспериментальным доказательством справедливости общей теории относительности является, кажется, движение перигелия орбиты планеты Меркурий, величина которого, по-видимому, находится в очень хорошем согласии с предсказаниями теории.

Хотя, таким образом, экспериментальный базис общей теории относительности еще довольно узок, она, однако, содержит идеи огромнейшей степени важности. В течение всего времени развития математики от античности до XIX столетия евклидова геометрия рассматривалась как самоочевидная. Аксиомы Евклида имели отношение к основаниям любой математической теории геометрического характера и представляли собой базис, который не мог быть поставлен под сомнение. Затем в XIX столетии математики Больяй и Лобачевский, Гаусс и Риман нашли, что можно построить другие геометрии, которые могут быть развиты с той же математической строгостью, что и евклидова. Поэтому вопрос о том, какая геометрия является справедливой, с этого времени становится эмпирическим. И только в трудах Эйнштейна этот вопрос смог быть поставлен как физический. Геометрия, о которой идет речь в общей теории относительности, включает в себя не только геометрию трехмерного пространства, но и четырехмерное многообразие пространства и времени. Теория относительности устанавливает связь между геометрией этого многообразия и распределением масс во вселенной. Значит, эта теория поднимает в новой форме старые вопросы пространства и времени в случае очень больших расстояний, и она предполагает ответы, которые могут быть проверены наблюдениями.

Следовательно, можно снова поставить очень старые философские вопросы, занимавшие человеческий разум со времени самых ранних эпох философии и науки: конечно или бесконечно пространство? Что было до начала времени? Что будет в конце времени? Или у времени нет ни начала, ни конца? Эти вопросы нашли различные ответы в различных религиях и философских системах. В философии Аристотеля, например, все пространство вселенной представлялось как конечное, хотя оно и было бесконечно делимо. Пространство возникает благодаря протяженности тел, оно в известном смысле растягивается телами. Поэтому там, где нет никаких тел, нет и пространства. Вселенная состоит из Земли, Солнца и звезд - конечного числа тел. По ту сторону сферы неподвижных звезд нет никакого пространства. Поэтому пространство вселенной и было конечным. В философии Канта этот вопрос принадлежал к тому, что он назвал "антиномиями", - к числу вопросов, на которые нельзя ответить, так как два различных доказательства ведут к взаимно противоположным выводам. Пространство не может быть конечным, потому что мы не можем себе представить "конец" пространства. И какой бы точки пространства мы ни достигли, мы всегда представляем себе, что можем двигаться еще дальше. Но пространство не может быть и бесконечным, потому что пространство - это нечто, что мы можем себе представить, иначе понятия пространства не возникло бы вовсе, а мы не можем представить себе бесконечное пространство в отношении этого второго утверждения доказательство Канта нельзя передать дословно. Утверждение "пространство бесконечно" означает для нас нечто негативное: мы не можем дойти до "конца" пространства. Для Канта, однако, бесконечность пространства означает нечто действительно данное, нечто, что "существует" в смысле, который мы едва ли можем выразить. Кант приходит к выводу, что на вопрос о том, конечно или бесконечно пространство, нельзя дать никакого рационального ответа, потому что вселенная в целом не может быть предметом нашего опыта.

Подобное же положение возникает и относительно проблемы бесконечности времени. В исповеди Августина, например, вопрос поставлен в следующей форме: "Что делал бог до того, как он создал мир?" Августин не был удовлетворен известным ответом: "Бог был занят тем, что создавал ад для людей, задающих глупые вопросы". Это был бы слишком дешевый ответ, полагает Августин; и он пытается рационально проанализировать проблему: только для нас время течет, только мы ожидаем его как будущее, оно протекает для нас как настоящее мгновение, и мы вспоминаем о нем, как о прошлом. Но бог не находится во времени. Тысяча лет для него - что один день, и один день - что тысяча лет. Время было создано вместе с миром, оно, стало быть, принадлежит миру, и поэтому в то время, когда не существовало вселенной, не было и никакого времени. Для бога весь ход событий во вселенной был дан сразу. Значит, не было никакого времени до того, как мир был создан богом.

Правда, легко понять, что в подобных формулировках понятие "создан" тотчас же приводит к существенным трудностям. Это слово, в том виде как оно обычно употребляется, означает нечто, что возникает и чего ранее не существовало, и в этом смысле оно уже предполагает понятие времени. Поэтому в рациональных выражениях невозможно дать определение того, что можно понимать под оборотом речи "время было создано". Это обстоятельство снова напоминает нам часто обсуждаемый урок, который необходимо извлечь из новейшего развития физики, а именно: что всякое слово или всякое понятие, каким бы ясным оно нам ни казалось, имеет все-таки только ограниченную область применения.

Эти вопросы о бесконечности пространства и времени могут быть в общей теории относительности поставлены и отчасти - на основании эмпирического материала - решены. Если теория правильно описывает связь четырехмерной геометрии пространства и времени с распределением масс во вселенной, то астрономические наблюдения о распределении спиральных туманностей в пространстве могут дать нам информацию о геометрии вселенной. Тогда можно будет построить по крайней мере модели вселенной, космологические картины, следствия которых могут быть сравнены с эмпирическими фактами.

Что касается времени, то здесь, кажется, что-то вроде "начала" имело место. Многие наблюдения указывают на то, что вселенная около 4 миллиардов лет назад имела "начало" или, во всяком случае, что в то время материя вселенной была сконцентрирована в значительно меньшем объеме пространства, чем сейчас, и что с того времени вселенная все еще продолжает расширяться из этого небольшого объема с различными скоростями. Это одно и то же время в 4 миллиарда лет все снова и снова появляется во многих различных наблюдениях, например возраста метеоритов, минералов на Земле и т. д., и поэтому было бы, вероятно, затруднительно найти этому объяснение, совершенно отличное от идеи возникновения мира 4 миллиарда лет назад. Если идея "возникновения" в этой форме окажется правильной, то это будет означать, что по ту сторону указанного момента времени - то есть ранее чем 4 миллиарда лет назад - понятие времени должно претерпеть существенные изменения. Это более осторожное заключение становится на место простой формулировки о создании мира. При современном состоянии астрономических наблюдений эти вопросы геометрии пространства-времени еще не могут быть решены с какой-нибудь степенью надежности. Но уже довольно интересно знать, что эти вопросы, возможно, позднее смогут быть решены в один прекрасный момент на прочной основе астрономических знаний.

Даже если дальнейшее рассмотрение ограничить более надежно обоснованной специальной теорией относительности, то можно не сомневаться, что эта теория в огромной степени изменила наши представления о структуре пространства и времени. Беспокоит в этих изменениях, пожалуй, не столько их особенная природа, сколько тот факт, что они вообще оказались возможны. Структура пространства и времени, которую Ньютон математически установил в качестве основы своего описания природы, не содержала никаких внутренних противоречий, была проста и очень точно соответствовала употреблению понятий пространства и времени, к которому мы привыкли в повседневной жизни. Соответствие фактически было столь близким, что Ньютоновские определения можно было рассматривать просто как точную математическую формулировку этих понятий пространства и времени повседневной жизни. До теории относительности считалось само собой разумеющимся, что процессы могут быть упорядочены во времени независимо от их расположения в пространстве. Мы знаем, что в повседневной жизни это впечатление возникает потому, что скорость света значительно больше каких угодно других скоростей, с которыми имеют дело в повседневной жизни. В то время это ограничение, естественно, никто не представлял себе отчетливо. Но даже при условии, что сейчас мы знаем об этом ограничении, едва ли можно себе представить, что порядок событий во времени должен зависеть от их пространственного расположения, то есть от места, в котором они происходят.