Причины и условия конкретного преступного поведения. Криминология

История

Необходимость обмена информацией, сохранения письменных свидетельств о своей жизни и т. п. существовала у человека всегда. За всю историю человечества было перепробовано множество носителей информации. Так как носитель обладает рядом параметров, эволюция носителя информации определялась тем, какие требования к нему предъявлялись.

Древние времена

Древние люди на скалах изображали зверей, на которых они охотились. Однако угольные, глиняные, меловые рисунки смывало дождём, и для увеличения надёжности хранения информации первобытные художники стали выбивать силуэты животных на скалах острым камнем . Хотя камень повысил сохранность информации, её скорость записи и передача оставляли желать лучшего. Человек начал использовать для записи глину, которая имела свойства камня (сохранность информации), а её пластичность, удобство записи позволяла повысить эффективность записи.


Возможность эффективной записи способствует появлению письменности. Более пяти тысяч лет назад появляется (достижение шумерской цивилизации, территория современного Ирака) письменность на глине (уже не рисунки, а похожие на буквы значки и пиктограммы). Шумеры выдавливали знаки на табличках из сырой глины заострённой «клином» тростниковой палочкой (отсюда и название - клинопись ) . В ящиках («папках») хранились большие документы из десятков глиняных «страниц».

Глина была тяжела для больших текстов, потребность в которых возрастала. Поэтому на смену ей должен был появиться другой носитель

Египет: папирус

В начале третьего тысячелетия до н. э. в Египте появляется новый носитель, обладающий улучшенными некоторыми параметрами по сравнению с глиняными табличками. Там научились делать почти настоящую бумагу из папируса (высокого травянистого растения). От слова «папирус» произошло название бумаги в некоторых языках: фр. papier - во французском и немецком, англ. paper - в английском, исп. papel - в испанском, белор. папера - в белорусском. Пучок листьев папируса похож на лучи солнца (бог Ра), срез трёхгранного стебля имеет форму пирамиды, поэтому растение считалось царским .

Недостатком данного носителя являлось то, что со временем он темнел и ломался. Дополнительным недостатком стало то, что египтяне ввели запрет на вывоз папируса за границу.

Азия

Недостатки носителей информации (глина, папирус, воск) стимулировали поиск новых носителей. На этот раз сработал принцип «всё новое - хорошо забытое старое»: в Персии для письма издревле использовался дефтер - высушенные шкуры животных (в турецком и родственных ему языках слово «дефтер» и сейчас означает тетрадь), о чём вспомнили греки.

Жители греческого города Пергам (первыми переняли древнюю технологию) усовершенствовали процесс выделки шкур и во II веке до н. э. начали производство пергамента . Достоинства нового носителя - высокая надёжность хранения информации (прочность, долговечность, не темнел, не пересыхал, не трескался, не ломался), многоразовость (например, в сохранившемся молитвеннике Х века учёные обнаружили несколько слоёв записей, сделанных вдоль и поперёк, стёртых и зачищенных, а с помощью рентгена там обнаружился древнейший трактат Архимеда ). Книги на пергаменте - палимпсесты (от греч. παλίμψηστον - рукопись, писанная на пергаменте по смытому или соскобленному тексту).

Как и в других странах, в Юго-Восточной Азии испробовали множество разных способов записи и сохранения информации:

  • выжигание на узких бамбуковых пластинах со скреплением шнурами в «бамбуковые книги» (недостаток - занимают много места, низкая износостойкость шнуров);
  • письмо на:
    • шёлке (недостаток - дороговизна шёлка),
    • сшиваемые в «книгу» листья пальм (бумажный лист современной книги называется так в память о своём пальмовом прототипе ).

Из-за недостатков предыдущих носителей китайский император Лю Чжао приказал найти им достойную замену, и один из чиновников (Цай Лунь) в 105 году н. э. разработал способ производства бумаги (который не сильно изменился и по сию пору) из древесных волокон, соломы, травы, моха, тряпья, пакли, растительных отходов и т. п. Некоторые историки утверждают, что Цай Лунь подсмотрел процесс изготовления бумаги у бумажной осы (строит гнездо из ею пережёванных и смоченных клейкой слюной волокон древесины) . Однако сейчас найдены свидетельства в пользу того, что бумагу начали делать ещё раньше.

Европа

На территории Европы высокоразвитые народы (греки и римляне) нащупывали свои способы записи. Сменяются множество различных носителей: свинцовые листы, костяные пластинки и т. д.

Начиная с VII века до н. э. запись производится острой палочкой - стилусом (как и на глине) на деревянных дощечках, покрытых слоем податливого воска (т. н. восковые таблички). Стирание информации (ещё одно преимущество данного носителя) производилось обратным тупым концом стилуса. Скрепляли такие дощечки по четыре штуки (отсюда и слово «тетрадь», так как др.-греч. τετράς в переводе с греческого - четыре).

Однако на воске надписи недолговечны, и проблема сохранения записей была весьма актуальной.

Америка

В XI-XVI веках коренные народы Южной Америки придумали узелковое письмо «кипу» (quipu в переводе с языка индейцев кечуа - узел) . Из верёвок (к ним привязывали ряды шнурков) составлялись «сообщения». Тип, число узелков, цвета и количества нитей, их расположения и переплетения представлял собой «кодировку» («алфавит») кипу.
Нанизанными на шнуры небольшими раковинами кодировали свои сообщения индейские племена Северной Америки. Этот вид письменности назывался «вампум» - от индейского слова wampam (сокращённое от wampumpeag) - белые бусы . Переплетения шнуров образовывали полоску, которую обычно носили как пояс. Комбинацией цветных ракушек и рисунков на них могли составляться целые послания.


Древняя Русь

Как носитель использовалась берёста (верхний слой берёзовой коры). Буквы прорезывали писалом (костяная или металлическая палочка).
К концу XVI века на Руси появляется своя бумага (в русский язык слово «бумага» пришло скорее всего из итальянского, bambagia - хлопок).

Виды носителей информации: (если спросит!!!)

  • Жёсткий магнитный диск, ЖМД, НЖМД (hard disk, HD). Применяется как основной стационарный носитель информации в компьютерах. Большая ёмкость, высокая скорость доступа. Иногда встречаются модели со съёмным диском, который можно вынуть из компьютера и спрятать с сейф. Так выглядит НЖМД.
  • Гибкий магнитный диск, ГМД (floppy disk, FD) или дискета (diskette). Основной сменный носитель для персональных компьютеров. Небольшая ёмкость, низкая скорость доступа, но и стоимость тоже низкая. Основное преимущество – транспортабельность.
  • Лазерный компакт-диск (CD, CD-ROM). Большая ёмкость, средняя скорость доступа, но отсутствует возможность записи информации. Запись производится на специальном оборудовании. Так выглядит CD-привод.
  • Перезаписываемый лазерный компакт-диск (CD-R, CD-RW). В одних случаях возможна только запись (без перезаписи), в других - также ограниченное число циклов перезаписи данных. Те же характеристики, что и для обычного компакт-диска.
  • DVD-диск. Аналогичен CD-ROM, но имеет более высокую плотность записи (в 5-20 раз). Имеются устройства как только для считывания, так и для записи (перезаписи) DVD.
  • Сменный магнитный диск типа ZIP или JAZZ. Похож на дискету, но обладает значительно большей ёмкостью. Так выглядит ZIP-диск и привод для него.
  • Магнитооптический или т.н. флоптический диск. Сменный носитель большой ёмкости. Так выглядит магнитооптический диск и привод для него.
  • Кассета с магнитной лентой – сменный носитель для стримера (streamer) – прибора, специально предназначенного для хранения больших объёмов данных. Некоторые модели компьютеров приспособлены для записи информации на обычные магнитофонные кассеты. Кассета имеет большую ёмкость и высокую скорость записи-считывания, но медленный доступ к произвольной точке ленты. Так выглядит стример и его кассеты.
  • Перфокарты – в настоящее время почти не используются.
  • Перфолента – в настоящее время почти не используется.
  • Кассеты и микросхемы ПЗУ (read-only memory, ROM). Характеризуются невозможностью или сложностью перезаписи, небольшой ёмкостью, относительно высокой скоростью доступа, а также большой устойчивостью к внешним воздействиям. Обычно применяются в компьютерах и других электронных устройствах специализированного назначения, таких как игровые приставки, управляющие модули различных приборов, принтеры и т.д.
  • Магнитные карты (полоски). Маленькая ёмкость, транспортабельность, возможность сочетания машинно-читаемой и обычной текстовой информации. Кредитные карточки, пропуска, удостоверения и т.п.
  • Существует большое количество специализированных носителей, применяемых в различных малораспространённых приборах. Например, магнитная проволока, голограмма.

Начало начал (эволюция носителей информации)
XVIII век, Франция, город Лье. Текстильных дел мастер Базиль Бушон разработал элегантный способ управления станком. Он впервые установил рулон бумаги с проделанными в нужных местах отверстиями в барабан, после чего станок смог воспроизводить заданный рисунок на ткани. Изобретение позволило создавать весьма замысловатые плетения в автоматическом режиме.

Здесь нужно сделать лирическое отступление. Месье Бушон был сыном сборщика органов, эти музыкальные инструменты работают по схожему принципу. Наблюдая за работой отца, юноша придумал технологию, которая впоследствии перевернула мир. Бушон первым нашел способ сохранения команд на отдельном носителе с возможностью замены и многократного использования.

Время шло, изобретение получило дальнейшее развитие. Сначала Жан-Батист Фалкон предложил вместо рулона бумаги использовать прямоугольные участки, соединенные вместе, потом Жак Вакансон усовершенствовал станок Бушона-Фалкона и сделал его автоматическим - участие человека стало ненужным. Кстати, рукам находчивого изобретателя принадлежат первые в мире роботы (робот-флейтист и утка). К сожалению, они были утеряны...

Всемирный успех и известность пришли текстильному станку в 1801 году, когда Жозеф Мари Жаккард доработал технологию в очередной раз. Зачем мы уделяем так много времени рассказам о текстильных машинах? Дело в том, что станок Жаккарда вошел в историю как прообраз вычислительной машины. Механическая конструкция, конечно, не могла производить вычисления, но смена режимов работы при помощи перфокарт легла в основу технологий программирования. В контексте нашего исследования в первую очередь интересен способ сохранения команд на носителе - бумаге (в виде перфокарты).

Следующая остановка нашей машины времени - 30-е годы XIX столетия. В это время жил легендарный математик, философ-аналитик и инженер Чарльз Беббидж. Он известен как первый архитектор вычислительной системы. В 1822 году он приступил к сборке машины различий (автоматизация вычислений). По замыслу Беббиджа, машина должна рассчитывать значения полиномов (многочленов) - этот процесс отнимал много времени и приводил к большому числу ошибок. К сожалению, технические трудности не позволили закончить начатое.

Еще один проект Беббиджа - аналитическая машина - должен был использовать перфокарты для загрузки программы. Изобретатель предложил неслыханную по тем временам концепцию: программа составлялась на бумажной перфокарте, устанавливалась в машину, и та выполняла дальнейшие действия. Кстати, создавать программы на перфокартах помогала Ада Лавлейс, вошедшая в историю как первый программист (в 1970-х годах в ее честь назвали язык программирования). Гениальный замысел не получилось реализовать технически, лишь в начале XX века последователи собрали по чертежам Беббиджа аналитическую машину.

Последующая судьба носителей данных тесно связана с деятельностью Германа Холерита. На 1890 год в США была намечена очередная перепись населения. Упорядочивание результатов предыдущей переписи заняло семь лет. Правительство решило оптимизировать процесс и опробовать метод, предложенный Холеритом. Герман собрал механизм для считывания и обработки данных, занесенных на перфокарту. Использование нового подхода позволило завершить перепись всего за 2,5 года.

Впоследствии Холерит основал Tabulating Machine Company и занялся продажами. Дело оказалось прибыльным, в 1911 году к Герману присоединились еще три компании, образовавшие Computing Tabulating Recording Corporation, впоследствии переименованную в IBM.

К 1937 году 32 машины на заводе IBM в Нью-Йорке печатают по 5-10 млн перфокарт ежедневно. Бумажные носители применялись повсеместно и получили статус официальных документов. Вполне возможно, что перфокарты ушли бы в историю раньше, но мир захлестнула Вторая мировая война.

Эпоха магнитных лент

В это время немецкий инженер Фриц Пфлюмер создал магнитную пленку. Новый носитель состоял из тонкого слоя бумаги, покрытого порошком на основе оксида железа. Пфлюмер продал технологию компании AEG, которая разработала первое в мире записывающее и воспроизводящее устройство - Magnetophon. Изобретение тщательно скрывали до капитуляции Германии. Лишь в начале 1950-х магнитная пленка вырвалась за пределы страны.

Инновацию подхватили звукозаписывающие и телевизионные компании, которые стали использовать пленку для записи аудио и видео. В мир компьютеров технология пришла в 1951 году, когда Eckert-Mauchly выпустила систему UNIVAC I. Первым делом компьютер попал в то самое бюро, с которого началась история IBM, - в бюро по переписи населения. Магнитная пленка, использовавшаяся в UNIVAC, хранила куда больше информации в сравнении с бумажными перфокартами (10 000 перфокарт = 1 бобина с пленкой). IBM не осталась в стороне и переключилась на новый тип носителя. Чтобы перевести данные с накопившихся перфокарт, Eckert-Mauchly и IBM представили автоматические преобразователи.

Со временем бобины с пленкой обернули в пластиковые коробки, именно в таком виде «кассеты» дошли до наших дней. Пленка стала стандартом де-факто для записи данных, видео и музыки.

Настал 1967 год, руководство IBM поручило одному из инженеров разработать быстрый и компактный носитель, чтобы рассылать клиентам обновления софта. Команда Дэвида Ноубла разработала гибкий 8-дюймовый (20 см) диск объемом 80 Кб с возможностью одноразовой записи. Изделие было хрупким и притягивало много пыли. Доработанную версию упаковали в ткань, запечатали в пластик и назвали FD23. Разработка получила название «флоппи» или «дискета» (пластиковая упаковка была тонкая и гибкая, носитель как бы «хлопал крыльями», когда его несли в руках или трясли им в воздухе - отсюда и название floppy, от английского слова flop - хлопать). Дисководами для чтения дискет начали оборудовать компьютеры, но путь к успеху оказался непростым. Дисковод стоил наравне с самим компьютером, многие продолжали использовать пленочные кассеты.

В 1972 году Алан Шугарт покинул IBM и перешел в Memorex. Там инженер разработал Memorex 650 - перезаписываемую дискету объемом 175 Кб. 8-дюймовые дискеты дорабатывали и дальше, доведя объем до 1000 Кб.

Однако 8 дюймов для мобильного носителя многовато. Как-то раз два сотрудника из Shugart Associates (основана Аланом Шугартом) сидели в баре вместе с Ан Вэнгом из Wang Laboratories и обсуждали подходящий размер для дискеты. Тогда и родилась идея, что дискета по размеру не должна быть больше салфетки (5,25 дюймов или 13 см). Первые образцы 5,25-дюймовых дискет вмещали до 98 Кб данных. То был первый формат, который продвинула не IBM. Со временем объем дискеты увеличился до 1200 Кб.

Оптические технологии побеждают

В 1979 году Philips и Sony объединили усилия, чтобы создать революционный носитель на основе оптических технологий. Исследования были начаты еще в 1977 году инженерами Philips, первый компакт-диск (CD) появился на свет в 1982 году.

В основу метода записи легла концепция нагрева поверхности диска и образования на ней точек со строго определенными интервалами. Смена точки на ровную поверхность означает единицу, отсутствие смены - ноль. По поводу размера диска ходят разные легенды. Говорят, что диаметр 120 мм выбран не случайно - на диске такого размера помещается ровно 74 минуты аудио при 16-битном кодировании и качестве 44,1 кГц. Ну а 74 минуты - это длительность 9-й симфонии Людвига Ван Бетховена…

17 августа на заводе Philips вышел альбом шведской группы ABBA на CD, тогда же на рынке появились и плееры. К 1985 году многие звукозаписывающие компании перешли на CD, цены на проигрыватели падали. Еще бы, ведь компактный и легкий диск весом всего 16 г имел толщину 1,2 мм, вмещая при этом 74-90 минут качественного звука.

Стало понятно, что CD можно использовать и для записи данных. В 1985 году Sony и Philips разработали стандарт CD-ROM (Compact Disk Read Only Memory), позволяющий записывать на диск данные. Записывать CD могли только производители на заводах. Несмотря на преимущества CD, дискеты оставались популярными.

Ограничения и недостатки 5,25-дюймовых дискет очевидны - носители довольно большие и хрупкие, в щели легко проникала грязь. Несколько компаний взялись за разработку новых стандартов. В результате появились самые разные модификации, несовместимые друг с другом. Проблему решила Sony, представив сравнительно простую по конструкции 3,5-дюймовую дискету с отодвигающейся шторкой. Несколько компаний, включая Apple, поддержали разработку Sony. Со временем объем дискет увеличился с 400 Кб до 1,44 Мб.

В 1991 на арене появилась компания Insite Peripherals с Floptical. Инженеры совместили стандартный флоппи-дисковод с инфракрасным диодом для позиционирования считывающей головки, что позволило увеличить объем дискеты до 21 Мб. При этом дисковод мог читать обычные дискеты. Единственный недостаток Floptical - подключение через дорогой интерфейс SCSI. Тремя годами спустя Iomega показала Zip. Несмотря на схожий формат и размеры 3,5 дюйма, новые дисководы не умели читать обычные дискеты. Iomega представила дискеты объемом 100, 250 и даже 750 Мб, но технические проблемы и дороговизна носителей сделали свое дело, про Zip никто уже не вспоминает.

Компакт-диски стали как никогда популярными ближе к середине 1990-х, когда появились специальные форматы для записи видео (Video CD, Super Video CD) и фото (Photo CD, Picture CD). В начале 90-х Sony и Philips представили CD-R (Compact Disk Recordable) - компакт-диски с возможностью одноразовой записи. Следующая отправная точка - 1998 год, когда все та же парочка Sony и Philips разработали перезаписываемый диск CD-RW (Compact-Disk Rewritable). В это же время на горизонте замаячил DVD-формат...

Лазерный диск

Первым оптическим носителем данных стал так называемый Laserdisk (LD), продемонстрированный компаниями Philips и МСА в 1972 году. Огромный 30-сантиметровый диск попытались протолкнуть как замену для видеокассет формата VHS. Laserdisk представлял собой практически полностью аналоговый носитель с цифровым звуком, диски вмещали до 60 минут видео. Обычно производители выпускали кино на двойных носителях.

Изначально диск приходилось переворачивать по прошествии 60 минут на другую сторону. Затем производители техники выпустили плееры, в которых считывающая головка научилась перемещаться с одной стороны на другую, при этом зрителю все равно приходилось ждать, когда начнется считывание. Фильмы на двух и более дисках - отдельная история. Специально для таких комплектов Pioneer выпустила проигрыватель с двумя лотками.

Технологию несколько раз переименовывали, но спасти ее так и не удалось. Плееры с поддержкой LD появлялись вплоть до 2003 года. Ныне это раритет.

Вместо эпилога

Что было дальше, знают все - появились записываемые и перезаписываемые DVD, объемные флэш-накопители и т. д. Примерно в 2000 году окончательно ушел в историю последний оплот эпохи магнитных пленок - видеокассеты. Сейчас на рынке носителей данных идут ожесточенные войны между HD-DVD и Blu-ray, технологиями нового поколения. А в будущем нас ожидают голографические диски объемом от 300 Гб на пластинку...

Носитель информации – физическая среда, непосредственно хранящая информацию. Основным носителем информации для человека является его собственная биологическая память (мозг человека). Собственную память человека можно назвать оперативной памятью. Здесь слово “оперативный” является синонимом слова “быстрый”. Заученные знания воспроизводятся человеком мгновенно. Собственную память мы еще можем назвать внутренней памятью, поскольку ее носитель – мозг – находится внутри нас.

Носитель информации - строго определённая часть конкретной информационной системы, служащая для промежуточного хранения или передачи информации.

Основа современных информационных технологий – это ЭВМ. Когда речь идет об ЭВМ, то можно говорить о носителях информации, как о внешних запоминающих устройствах (внешней памяти). Эти носители информации можно классифицировать по различным признакам, например, по типу исполнения, материалу, из которого изготовлен носитель и т.п. Вот один из вариантов классификация носителей информации:

Ленточные носители информации

Магнитная лента - носитель магнитной записи, представляющий собой тонкую гибкую ленту, состоящую из основы и магнитного рабочего слоя. Рабочие свойства магнитной ленты характеризуются её чувствительностью при записи и искажениями сигнала в процессе записи и воспроизведения. Наиболее широко применяется многослойная магнитная лента с рабочим слоем из игольчатых частиц магнитно-твёрдых порошков гамма-окиси железа (у-Fе2О3), двуокиси хрома (СrО2) и гамма-окиси железа, модифицированной кобальтом, ориентированных обычно в направлении намагничивания при записи.

Дисковые носители информации относятся к машинным носителям с прямым доступом. Понятие прямой доступ означает, что ПК может «обратиться» к дорожке, на которой начинается участок с искомой информацией или куда нужно записать новую информацию .

Накопители на дисках наиболее разнообразны:

    Накопители на гибких магнитных дисках (НГМД), они же флоппи-диски, они же дискеты

    Накопители на жестких магнитных дисках (НЖМД), они же винчестеры (в народе просто «винты»)

    Накопители на оптических компакт-дисках:

    • CD-ROM (Compact Disk ROM)

В накопителях на гибких магнитных дисках (НГМД или дискетах) и накопителях на жестких магнитных дисках (НЖМД или винчестерах), в основу записи, хранения и считывания информации положен магнитный принцип, а в лазерных дисководах - оптический принцип.

Гибкие магнитные диски помещаются в пластмассовый корпус. Такой носитель информации называется дискетой. Дискета вставляется в дисковод, вращающий диск с постоянной угловой скоростью. Магнитная головка дисковода устанавливается на определенную концентрическую дорожку диска, на которую и записывается (или считывается) информация.

Информационная ёмкость дискеты невелика и составляет всего 1.44 Мбайт. Скорость записи и считывания информации также мала (около 50 Кбайт/с) из-за медленного вращения диска (360 об./мин).

Жесткие магнитные диски.

Жесткий диск (HDD - Hard Disk Drive) относится к несменным дисковым магнитным накопителям. Первый жесткий диск был разработан фирмой IBM в 1973 г. и имел емкость 16 Кбайт. Жесткие магнитные диски представляют собой несколько десятков дисков, размещенных на одной оси, заключенных в металлический корпус и вращающихся с высокой угловой скоростью. Скорость записи и считывания информации с жестких дисков достаточно велика (около 133 Мбайт/с) за счет быстрого вращения дисков (7200 об./мин).

В процессе работы компьютера случаются сбои. Вирусы, перебои энергоснабжения, программные ошибки - все это может послужить причиной повреждения информации, хранящейся на Вашем жестком диске. Повреждение информации далеко не всегда означает ее потерю, так что полезно знать о том, как она хранится на жестком диске, ибо тогда ее можно восстановить. Тогда, например, в случае повреждения вирусом загрузочной области, вовсе не обязательно форматировать весь диск (!), а, восстановив поврежденное место, продолжить нормальную работу с сохранением всех своих бесценных данных.

В жестких дисках используются достаточно хрупкие и миниатюрные элементы. Чтобы сохранить информацию и работоспособность жестких дисков, необходимо оберегать их от ударов и резких изменений пространственной ориентации в процессе работы.

Лазерные дисководы и диски.

В начале 80-х годов голландская фирма «Philips» объявила о совершенной ею революцией в области звуковоспроизведения. Ее инженеры придумали то, что сейчас пользуется огромной популярностью - Это лазерные диски и проигрыватели.

Лазерные дисководы используют оптический принцип чтения информации. На лазерных дисках CD (CD - Compact Disk, компакт диск) и DVD (DVD - Digital Video Disk, цифровой видеодиск) информация записана на одну спиралевидную дорожку (как на грампластинке), содержащую чередующиеся участки с различной отражающей способностью. Лазерный луч падает на поверхность вращающегося диска, а интенсивность отраженного луча зависит от отражающей способности участка дорожки и приобретает значения 0 или 1. Для сохранности информации лазерные диски надо предохранять от механических повреждений (царапин), а также от загрязнения. На лазерных дисках хранится информация, которая была записана на них в процессе изготовления. Запись на них новой информации невозможна. Производятся такие диски путем штамповки. Существуют CD-R и DVD-R диски информация на которые может быть записана только один раз. На дисках CD-RW и DVD-RW информация может быть записана/перезаписана многократно. Диски разных видов можно отличить не только по маркировки, но и по цвету отражающей поверхности.

Устройства на основе flash-памяти.

Flash-память - это энергонезависимый тип памяти, позволяющий записывать и хранить данные в микросхемах. Устройства на основе flash-памяти не имеют в своём составе движущихся частей, что обеспечивает высокую сохранность данных при их использовании в мобильных устройствах.

Flash-память представляет собой микросхему, помещенную в миниатюрный корпус. Для записи или считывания информации накопители подключаются к компьютеру через USB-порт. Информационная емкость карт памяти достигает 1024 Мбайт.

В современном обществе можно выделить три основных вида носителей информации:

1) бумажный;

2) магнитный;

3) оптический.

Современные микросхемы памяти позволяют хранить в 1 см 3 до 10 10 битов информации, однако это в 100 миллиардов раз меньше, чем в ДНК. Можно сказать, что современные технологии пока существенно проигрывают биологической эволюции.

Однако если сравнивать информационную емкость традиционных носителей информации (книг) и современных компьютерных носителей, то прогресс очевиден:

Лист формата А4 с текстом (набран на компьютере шрифтом 12-го кегля с одинарным интервалом) - около 3500 символов

Страница учебника - 2000 символов

Гибкий магнитный диск – 1,44 Мб

Оптический диск CD-R(W) – 700 Мб

Оптический диск DVD – 4,2 Гб

Флэш-накопитель - несколько Гб

Съемный жесткий диск или Жесткий магнитный диск– сотни Гб

Таким образом, на дискете может храниться 2-3 книги, а на жестком магнитном диске или DVD - целая библиотека, включающая десятки тысяч книг.

Достоинства и недостатки хранения информации во внутренней и внешней памяти. (Достоинство внутренней памяти - быстротавоспроизведения информации, а недостаток- со временем часть информации забывается. Достоинство внешней памяти- большие объемы информации хранится долго, а недостаток- для доступа к определенной информации требуется время (например, чтобы подготовить реферат по предмету необходимо найти, проанализировать и выбрать подходящий материал))

Архив информации

Одним из наиболее широко распространенных видов сервисных программ являются программы, предназначенные для архивации, упаковки файлов путем сжатия хранимой в них информации.

Сжатие информации - это процесс преобразования информации, хранящейся в файле, к виду, при котором уменьшается избыточность в ее представлении и соответственно требуется меньший объем памяти для хранения.

Сжатие информации в файлах производится за счет устранения избыточности различными способами, например за счет упрощения кодов, исключения из них постоянных битов или представления повторяющихся символов или повторяющейся последовательности символов в виде коэффициента повторения и соответствующих символов. Применяются различные алгоритмы подобного сжатия информации.

Сжиматься могут как один, так и несколько файлов, которые в сжатом виде помещаются в так называемый архивный файл или архив.

Архивный файл - это специальным образом организованный файл, содержащий в себе один или несколько файлов в сжатом или несжатом виде и служебную информацию об именах файлов, дате и времени их создания или модификации, размерах и т.п.

Целью упаковки файлов обычно являются обеспечение более компактного размещения информации на диске, сокращение времени и соответственно стоимости передачи информации по каналам связи в компьютерных сетях. Кроме того, упаковка в один архивный файл группы файлов существенно упрощает их перенос с одного компьютера на другой, сокращает время копирования файлов на диски, позволяет защитить информацию от несанкционированного доступа, способствует защите от заражения компьютерными вирусами.

Степень сжатия зависит от используемой программы, метода сжатия и типа исходного файла. Наиболее хорошо сжимаются файлы графических образов, текстовые файлы и файлы данных, для которых степень сжатия может достигать 5 - 40%, меньше сжимаются файлы исполняемых программ и загрузочных модулей - 60 - 90%. Почти не сжимаются архивные файлы. Программы для архивации отличаются используемыми методами сжатия, что соответственно влияет на степень сжатия.

Архивация (упаковка) - помещение (загрузка) исходных файлов в архивный файл в сжатом или несжатом виде. Разархивация (распаковка) - процесс восстановления файлов из архива точно в таком виде, какой они имели до загрузки в архив. При распаковке файлы извлекаются из архива и помещаются на диск или в оперативную память;

Программы, осуществляющие упаковку и распаковку файлов, называются программами-архиваторами .

Большие по объему архивные файлы могут быть размещены на нескольких дисках (томах). Такие архивы называются многотомными. Том - это составная часть многотомного архива. Создавая архив из нескольких частей, можно записать его части на несколько дискет.

Основными характеристиками программ-архиваторов являются:

скорость работы;

сервис (набор функций архиватора);

степень сжатия – отношение размера исходного файла к размеру упакованного файла.

Основными функциями архиваторов являются:

· создание архивных файлов из отдельных (или всех) файлов текущего каталога и его подкаталогов, загружая в один архив до 32 000 файлов;

· добавление файлов в архив;

· извлечение и удаление файлов из архива;

· просмотр содержимого архива;

· просмотр содержимого архивированных файлов и поиск строк в архивированных файлах;

· ввод в архив комментарии к файлам;

· создание многотомных архивов;

· создание самораспаковывающихся архивов, как в одном томе, так и в виде нескольких томов;

· обеспечение защиты информации в в архиве и доступ к файлам, помещенным в архив, защиту каждого из помещенных в архив файлов циклическим кодом;

· тестирование архива, проверка сохранности в нем информации;

· восстановление файлов (частично или полностью) из поврежденных архивов;

· поддержки типов архивов, созданных другими архиваторами и др.