Акустический расчет и архитектурная акустика. Акустический расчет системы вентиляции и кондиционирования в современных зданиях Выбор количества оповещателей в конкретном типе помещений

Проектируемое здание нужно оборудовать устройствами оповещения людей о пожаре по 2 типу.

Для оповещения людей о пожаре будут использоваться оповещатели типа «Маяк-12-3М» (ООО «Электротехника и Автоматика», Россия, г. Омск) и световые оповещатели «ТС-2 СВТ1048.11.110» (табло «Выход») подключенные к прибору С2000-4 (ЗАО НВП «Болид»).

Для сети оповещения при пожаре применяется огнестойкий кабель КПСЭнг(А)-FRLS-1х2х0,5.

Для эл. питания оборудования по напряжению U=12 В применяется источник резервированного эл. питания «РИП-12» исп.01 с аккумуляторной батареей емк. 7 А ч. Аккумуляторные батареи источника эл. питания обеспечивают работу оборудования в течение не менее 24 часов в дежурном режиме и 1 час в режиме «Пожар» при отключении основного источника эл.питания.

Основные требования к СОУЭ изложены в НПБ 104-03 «Системы оповещения и управления эвакуацией людей при пожарах в зданиях и сооружениях»:

3. Принятые расчетные допущения

Исходя из геометрических размеров помещений, все помещения делятся только на три типа:

  • «Коридор» -длина превышает ширину в 2 и более раз;
  • «Зал» — площадь более 40 кв.м. (в данном расчете не применяется).

В помещении типа «Комната» размещаем один оповещатель.

4. Таблица значений ослабления звукового сигнала

В воздушной среде звуковые волны затухают вследствие вязкости воздуха и молекулярного затухания. Звуковое давление ослабевает пропорционально логарифму расстояния (R) от оповещателя: F (R) = 20 lg (1/R). На рис.1 показан график ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R).


Рис. 1 — График ослабления звукового давления в зависимости от расстояния до источника звука F (R) =20 lg (1/R)

Для упрощения расчетов ниже приведена таблица реальных значений уровней звукового давления от оповещателя «Маяк-12-3М» на различных расстояниях.

Таблица — Звуковое давление, создаваемое одиночным оповещателем, при его включении на 12В на различном расстоянии от оповещателя.

5. Выбор количества оповещателей в конкретном типе помещений

На поэтажных планах обозначены геометрические размеры и площадь каждого помещения.

В соответствии с принятым ранее допущением, делим их на два типа:

  • «Комната» — площадь до 40 кв.м;
  • «Коридор» — длина превышает ширину в 2 и более раз.
  • В помещении типа «Комната» допускается размещение одного оповещателя.

    В помещении типа «Коридор» – будут размещаться несколько оповещателей, равномерно расположенные по помещению.

    Как результат – определение количества оповещателей в конкретном помещении.

    Выбор «расчётной точки» — точки на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума.

    Как результат – определение длины прямой, соединяющей точку крепления оповещателя с «расчётной точкой».

    Расчетная точка — точка на плоскости озвучивания в данном помещении, максимально удалённой от оповещателя, в которой необходимо обеспечить уровень звука не менее чем на 15 дБА выше допустимого уровня звука постоянного шума, согласно НПБ 104-03 п.3.15.

    На основании СНИП 23-03-2003 пункта 6 «Нормы допустимого шума» и приведённой там же «Таблицы 1» выводим значения допустимого уровня шума для общежития рабочих специалистов равно 60 дБ.

    При расчетах следует учитывать ослабление сигнала при прохождении через двери:

    • противопожарные -30 дБ(А);
    • стандартные -20 дБ(А)

    Условные обозначения

    Примем следующие условные обозначения:

    • Н под. – высота подвеса оповещателя от пола;
    • 1,5м — уровень 1,5 метра от пола, на этом уровне находится плоскость озвучивания;
    • h1 — превышение над уровнем 1,5 м до точки подвеса;
    • Ш — ширина помещения;
    • Д — длина помещения;
    • R — расстояние от оповещателя до «расчётной точки»;
    • L — проекция R (расстояние от оповещателя до уровня 1,5 м на противоположной стене);
    • S — площадь озвучивания.

    5.1 Расчет для помещения типа «Комната»

    Определим «расчётную точку» — точку, максимально удалённую от оповещателя.

    Для подвеса выбираются «меньшие» стены, противостоящие по длине помещения, в соответствии с НПБ 104-03 в п. 3.17.

    Рис. 2 — Вертикальная проекция крепления настенного оповещателя по НПБ

    Оповещатель располагаем по середине «Комнаты» — по центру короткой стороны, как изображено на рис.3

    Рис. 3 — Расположение оповещателя по середине «Комнаты»

    Для того, чтобы вычислить размер R, необходимо применить теорему Пифагора:

    • Д – длина комнаты, в соответствии с планом равна 6,055 м;
    • Ш – ширина комнаты, в соответствии с планом равна 2,435 м;
    • Если оповещатель будет размещаться выше 2,3 м, то вместо 0,8 м, нужно взять размер h1 превышающий высоту подвеса над уровнем 1,5 м.

    5.1.1 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-15,8)=89,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равнo 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -15,8 дБ в соответствии с рис.1 когда R=6,22 м.

    5.1.2 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    5.1.3 Проверка правильности расчета:

    Р =89,2 > Р р.т.=75 (условие выполняется)

    СОУЭ в защищаемом помещении.

    5.2 Расчет для помещения типа «Коридор»

    Оповещатели размещаются на одной стене коридора с интервалом в 4-ре ширины. Первый размещаются на расстоянии ширины от входа. Общее количество оповещателей исчисляется по формуле:

    N = 1 + (Д – 2*Ш) / 3*Ш= 1+(26,78-2*2,435)/3*2,435=4 (шт.)

    • Д – длина коридора, в соответствии с планом равна 26,78 м;
    • Ш – ширина коридора, в соответствии с планом равна 2,435 м.

    Количество округляется до целого значения в большую сторону. Размещение оповещателей представлено на рис. 4.

    Рис.4 — Размещение оповещателей в помещении типа «Коридор» при ширине менее 3-х метров и расстояние «до расчётной точки»

    5.2.1 Определяем расчётные точки:

    «Расчётная точка», находится на противоположной стене на удалении в две ширины от оси оповещателя».

    5.2.2 Определяем уровень звукового давления в расчетной точке:

    Р = Рдб + F (R)=105+(-14,8)=90,2 (дБ)

    • Pдб – звуковое давление громкоговорителя, согласно тех. информации на оповещатель «Маяк-12-3М» равно 105 дБ;
    • F (R) – зависимость звукового давления от расстояния, равна -14,8 дБ в соответствии с рис.1 когда R=5,5 м.

    5.2.3 Определяем величину звукового давления, в соответствии с НПБ 104-03 п.3.15:

    Р р.т. = N + ЗД =60+15=75 (дБ)

    • N – допустимый уровень звука постоянного шума, для общежитий равна 75 дБ;
    • ЗД – запас звукового давления, равный 15 дБ.

    5.2.4 Проверка правильности расчета:

    Р=90,2 > Р р.т=75 (условие выполняется)

    Таким образом, в результате расчетов, выбранный тип оповещателя «Маяк-12-3М» обеспечивает и превышает значение звукового давления, тем самым обеспечивая четкую слышимость звуковых сигналов СОУЭ в защищаемом помещении.

    В соответствии с расчетом, выполним расстановку звуковых оповещателей см. рис.5.

    Рис.5 — План размещения оповещателей на отм. 0.000

Инженерно-строительный журнал, N 5, 2010 год
Рубрика: Технологии

Д.т.н., профессор И.И.Боголепов

ГОУ Санкт-Петербургский государственный политехнический университет
и ГОУ Санкт-Петербургский государственный морской технический университет;
магистр А.А.Гладких,
ГОУ Санкт-Петербургский государственный политехнический университет


Система вентиляции и кондиционирования воздуха (СВКВ) - важнейшая система для современных зданий и сооружений. Однако, кроме необходимого качественного воздуха, система транспортирует в помещения шум. Он идет от вентилятора и других источников, распространяется по воздуховоду и излучается в вентилируемое помещение. Шум несовместим с нормальным сном, учебным процессом, творческой работой, высокопроизводительным трудом, полноценным отдыхом, лечением, получением качественной информации . В строительных нормах и правилах России сложилась такая ситуация. Метод акустического расчета СВКВ зданий, использовавшийся в старом СНиПе II-12-77 "Защита от шума " , устарел и не вошел поэтому в новый СНиП 23-03-2003 "Защита от шума " . Итак, старый метод устарел, а нового общепризнанного пока нет . Ниже предлагается простой приближенный способ акустического расчета СВКВ в современных зданиях, разработанный с использованием лучшего производственного опыта, в частности, на морских судах .

Предлагаемый акустический расчет основан на теории длинных линий распространения звука в акустически узкой трубе и на теории звука помещений с практически диффузным звуковым полем . Он выполняется с целью оценки уровней звукового давления (далее - УЗД) и соответствия их значений действующим нормам допустимого шума . Он предусматривает определение УЗД от СВКВ вследствие работы вентилятора (далее - "машина") для следующих типовых групп помещений:

1) в помещении, где расположена машина;

2) в помещениях, через которые воздуховоды проходят транзитом;

3) в помещениях, обслуживаемых системой.

Исходные данные и требования

Расчет, проектирование и контроль защиты людей от шума предлагается выполнять для наиболее важных для человеческого восприятия октавных полос частот, а именно: 125 Гц, 500 Гц и 2000 Гц. Октавная полоса частот 500 Гц является среднегеометрической величиной в диапазоне нормируемых по шуму октавных полос частот 31,5 Гц - 8000 Гц . Для постоянного шума расчет предусматривает определение УЗД в октавных полосах частот по уровням звуковой мощности (УЗМ) в системе. Величины УЗД и УЗМ связаны общим соотношением = - 10, где - УЗД относительно порогового значения 2·10 Н/м; - УЗМ относительно порогового значения 10 Вт; - площадь распространения фронта звуковых волн, м.

УЗД должны определяться в расчетных точках нормируемых по шуму помещений по формуле = + , где - УЗМ источника шума. Величина , учитывающая влияние помещения на шум в нем, рассчитывается по формуле:

где - коэффициент, учитывающий влияние ближнего поля; - пространственный угол излучения источника шума, рад.; - коэффициент направленности излучения, принимается по экспериментальным данным (в первом приближении равен единице); - расстояние от центра излучателя шума до расчетной точки в м; = - акустическая постоянная помещения, м; - средний коэффициент звукопоглощения внутренних поверхностей помещения; - суммарная площадь этих поверхностей, м; - коэффициент, учитывающий нарушение диффузного звукового поля в помещении.

Указанные величины, расчетные точки и нормы допустимого шума регламентируются для помещений различных зданий СНиПом 23-03-2003 "Защита от шума " . Если расчетные значения УЗД превосходят норму допустимого шума хотя бы в одной из указанных трех полос частот, то необходимо спроектировать мероприятия и средства снижения шума.

Исходными данными для акустического расчета и проектирования СВКВ являются:

- компоновочные схемы, применяемые в конструкции сооружения; размеры машин, воздуховодов, регулирующей арматуры, колен, тройников и воздухораспределителей;

- скорости движения воздуха в магистралях и ответвлениях - по данным технического задания и аэродинамического расчета;

- чертежи общего расположения помещений, обслуживаемых СВКВ - по данным строительного проекта сооружения;

- шумовые характеристики машин, регулирующей арматуры и воздухораспределителей СВКВ - по данным технической документации на эти изделия.

Шумовыми характеристиками машины являются следующие уровни УЗМ воздушного шума в октавных полосах частот в дБ: - УЗМ шума, распространяющегося от машины в воздуховод всасывания; - УЗМ шума, распространяющегося от машины в воздуховод нагнетания; - УЗМ шума, излучаемого корпусом машины в окружающее пространство. Все шумовые характеристики машины определяются в настоящее время на основании акустических измерений по соответствующим национальным или международным стандартам и другим нормативным документам .

Шумовые характеристики глушителей, воздуховодов, регулируемой арматуры и воздухораспределителей представлены УЗМ воздушного шума в октавных полосах частот в дБ:

- УЗМ шума, генерируемого элементами системы при прохождении потока воздуха через них (генерация шума); - УЗМ шума, рассеиваемого или поглощаемого в элементах системы при прохождении через них потока звуковой энергии (снижение шума).

Эффективность генерации и снижения шума элементами СВКВ определяются на основании акустических измерений. Подчеркнем, что значения величин и должны быть указаны в соответствующей технической документации.

Должное внимание уделяется при этом точности и надежности акустического расчета, которые закладываются в погрешность результата величинами и .

Расчет для помещений, где установлена машина

Пусть в помещении 1, где установлена машина, имеется вентилятор, уровень звуковой мощности которого, излучаемый в трубопровод всасывания, нагнетания и через корпус машины, есть величины в дБ , и . Пусть у вентилятора на стороне трубопровода нагнетания установлен глушитель шума с эффективностью глушения в дБ (). Рабочее место находится на расстоянии от машины. Разделяющее помещение 1 и помещение 2 стена находится на расстоянии от машины. Постоянная звукопоглощения помещения 1: = .

Для помещения 1 расчет предусматривает решение трех задач.

1-я задача . Выполнение нормы допустимого шума .

Если всасывающий и нагнетательный патрубки выведены из помещения машины, то расчет УЗД в помещении, где она расположена, производится по следующим формулам.

Октавные УЗД в расчетной точке помещения определяются в дБ по формуле:

где - УЗМ шума, излучаемого корпусом машины с учетом точности и надежности с помощью . Величина , указанная выше, определяется по формуле:

Если в помещении размещены n источников шума, УЗД от каждого из которых в расчетной точке равны , то суммарный УЗД от всех их определяется по формуле:

В результате акустического расчета и проектирования СВКВ для помещения 1, где установлена машина, должно быть обеспечено выполнение в расчетных точках норм допустимого шума .

2-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 1 в помещение 2 (помещение, через который воздуховод проходит транзитом), а именно величины в дБ производится по формуле

3-я задача. Расчет величины УЗМ, излучаемой стенкой площадью со звукоизоляцией помещения 1 в помещение 2, а именно величины в дБ, выполняется по формуле

Таким образом, результатом расчета в помещении 1 является выполнение норм по шуму в этом помещении и получение исходных данных для расчета в помещении 2.

Расчет для помещений, через которые воздуховод проходит транзитом

Для помещения 2 (для помещений, через которые воздуховод проходит транзитом) расчет предусматривает решение следующих пяти задач.

1-я задача. Расчет звуковой мощности, излучаемой стенками воздуховода в помещение 2, а именно определение величины в дБ по формуле:

В этой формуле: - см. выше 2-ю задачу для помещения 1;

=1,12 - эквивалентный диаметр сечения воздуховода с площадью поперечного сечения ;

- длина помещения 2.

Звукоизоляция стенок цилиндрического воздуховода в дБ рассчитывается по формуле:

где - динамический модуль упругости материала стенки воздуховода, Н/м;

- внутренний диаметр воздуховода в м;

- толщина стенки воздуховода в м;


Звукоизоляция стенок воздуховодов прямоугольного сечения рассчитывается по следующей формуле в ДБ:

где = - масса единицы поверхности стенки воздуховода (произведение плотности материала в кг/м на толщину стенки в м);

- среднегеометрическая частота октавных полос в Гц.

2-я задача. Расчет УЗД в расчетной точке помещения 2, находящейся на расстоянии от первого источника шума (воздуховод) выполняется по формуле, дБ:

3-я задача. Расчет УЗД в расчетной точке помещения 2 от второго источника шума (УЗМ, излучаемой стеной помещения 1 в помещение 2, - величина в дБ) выполняется по формуле, дБ:

4-я задача. Выполнение нормы допустимого шума .

Расчет ведется по формуле в дБ:

В результате акустического расчета и проектирования СВКВ для помещения 2, через которое воздуховод проходит транзитом, должно быть обеспечено выполнение в расчетных точках норм допустимого шума . Это первый результат.

5-я задача. Расчет величины УЗМ в воздуховоде нагнетания из помещения 2 в помещение 3 (помещение, обслуживаемое системой), а именно величины в дБ по формуле:

Величина потерь на излучение звуковой мощности шума стенками воздуховодов на прямолинейных участках воздуховодов единичной длины в дБ/м представлена в таблице 2. Вторым результатом расчета в помещении 2 является получение исходных данных для акустического расчета системы вентиляции в помещении 3.

Расчет для помещений, обслуживаемых системой

В помещениях 3, обслуживаемых СВКВ (для которых система в конечном счете и предназначена), расчетные точки и нормы допустимого шума принимаются в соответствии со СНиП 23-03-2003 "Защита от шума " и техническим заданием.

Для помещения 3 расчет предусматривает решение двух задач.

1-я задача. Расчет звуковой мощности, излучаемой воздуховодом через выпускное воздухораспределительное отверстие в помещение 3, а именно определение величины в дБ, предлагается выполнять следующим образом.

Частная задача 1 для низкоскоростной системы со скоростью воздуха v << 10 м/с и = 0 и трех типовых помещений (см. ниже пример акустического расчета) решается с помощью формулы в дБ:

Здесь



() - потери в глушителе шума в помещении 3;

() - потери в тройнике в помещении 3 (см. ниже формулу);

- потери в результате отражения от конца воздуховода (см. таблицу 1 ).

Общая задача 1 состоит в решении для многих из трех типовых помещений с помощью следующей формулы в дБ:



Здесь - УЗМ шума, распространяющегося от машины в воздуховод нагнетания в дБ с учетом точности и надежности величиной (принимается по данным технической документации на машины);

- УЗМ шума, генерируемого воздушным потоком во всех элементах системы в дБ (принимается по данным технической документации на эти элементы);

- УЗМ шума, поглощающегося и рассеивающегося при прохождении потока звуковой энергии через все элементы системы в дБ (принимается по данным технической документации на эти элементы);

- величина, учитывающая отражение звуковой энергии от концевого выходного отверстия воздуховода в дБ, принимается по таблице 1 (эта величина равна нулю, если уже включает в себя );

- величина, равная 5 дБ для низкоскоростной СВКВ (скорость воздуха в магистралях меньше 15 м/с), равная 10 дБ для среднескоростной СВКВ (скорость воздуха в магистралях меньше 20 м/с) и равная 15 дБ для высокоскоростной СВКВ (скорость в магистралях меньше 25 м/с).

Таблица 1. Величина в дБ. Октавные полосы

  • Выбор облицовочных материалов
  • Распределение акустических систем
  • Вывод результатов расчета



Правильное размещение аппа ратуры при любых акустических характеристиках зала позволяет получить хорошее качество восприятия различных звуков: речи, музыки, шумов. В пространстве расположения зрителей, участвующих в мероприятии, требуется обеспечить нужную громкость, разборчивость и звучание без искажений во всем диапазоне частот аудио сигнала. С этой целью предлагаем услугу проведения профессионального акустического расчета . Он позволяет выбрать облицовочный материал поверхностей, разборчивость речи и состав аудиосистемы.

Нашей компанией проводятся электро-акустические расчеты для различных объектов: стадионов , бассейнов , теннисных кортах , прочих спортивных объектов , концертных залов , ресторанов , открытых площадок , Храмов , залов для проведения концертов и конференций . Рассчитывая акустику, специалисты учитывают особенности архитектуры помещения и специфику проводимого в нем мероприятия. Требуемая оптимальная величина звукового давления различна в случаях трансляции объявлений диктора, фонового музыкального сопровождения, концерта звезды или классической музыки.

При расчете звуковой аппаратуры для конкретного зала, проводится анализ помещения. На его основании выбирают оптимальное распределение звукового поля и места размещения колонок. Используются план, разрезы помещения, описание отделочных материалов потолка, стен.

Чтобы заказать акустический расчет , следует предоставить исходные данные с указанием габаритных размеров площадки, высоту потолка, материалы, характер мероприятия. Предоставляют чертежи либо эскизы. При необходимости исполнителем проекта на месте проводятся замеры.

При расчете мощности акустической системы как один из параметров учитывается уровень шума. Он зависит от числа людей в зале и их действий. Большее звуковое давление требуется на танцплощадке. Имеет значение также удаленность слушателей от источников звукового сигнала. Их размещают таким образом, чтобы обеспечить равномерность звукового поля для всех зрительских мест. Если в помещении имеются балконы и бельэтаж, то для них добовляются линии задержки и расчеты проводятся для каждой зоны совокупно.

Воспользовавшись предложенной компанией услугой проведения расчета и подбора акустической системы, можно организовать качественную трансляцию звука в любом месте: в зале ресторана, клуба или на стадионе. По нашим расчетам, наши специалисты выполняют также установку аппаратуры и ее настройку.

Основой проектирование звуковой системы или системы озвучивания помещений является акустический расчет. С помощью акустического расчета можно понять какие акустические системы лучше всего выбрать для данного зала и как лучше всего их расположить для обеспечение равномерного распределения звука. С помощью расчета звука так же есть возможность согласовать с заказчиком в каких зонах нужно изменить уровень громкости звукового сигнала для обеспечения комфортности зрителей. Еще одна задача которую можно выполнить с помощью акустического расчета это расчет звукопоглощения, подбор облицовочных материалов зала или помещения, где будет установлена звуковая система, для обеспечении качественной разборчивости речи и хорошего восприятие музыки.

Вопрос акустической обработки различных помещений является очень актуальным в настоящее время. С появлением новых моделей звукозаписывающей и звуковоспроизводящей аппаратуры она стала обязательной.

Современная промышленность предлагает огромный выбор отделочных материалов с различными частотными свойствами, что позволяет при правильном их выборе получить необходимые частотные характеристики помещений кинозалов, студий звукозаписи, речевых студий, концертных залов, вокзалов, аэропортов, конференц-залов, ночных клубов и множества других.

Выбор материалов производился по различным критериям, в том числе экономическому. Таким образом, можно выбрать недорогие материалы, но при этом все требования к частотным характеристикам помещения выполняются. Правильность выбора материалов будет подтверждена расчетом частотных характеристик.



Для создания модели под акустический расчет необходимы все размеры зала. В специализированной программе EASE создается 3D-модель зала точная копия, со всеми размерами, в которой подбираются материалы по коэффициенту звукопоглощения для достижения рекомендуемого времени реверберации под определенный тип зала и его назначения.

На рисунке показаны графики для различных залов:

  • 1 - залы для ораторий и органной музыки;
  • 2 - залы для симфонической музыки;
  • 3 - залы для камерной музыки, залы оперных театров;
  • 4 - залы многоцелевого назначения, залы музыкально-драматических театров, спортивные залы;
  • 5 - лекционные залы, залы заседаний, залы драматических театров, кинозалы, пассажирские залы.

Как только рекомендуемое расчетное время реверберации достигло нужного результата, в модели зала устанавливаются симуляторы акустических систем (громкоговорителей). Файлы-симуляторы громкоговорителей находятся в базе программы акустического расчета EASE и периодически пополняется. В 3D-модели зала (помещения) можно распределить симуляторы акустических систем как угодно, для этого специалисты пользуются определенным правилам которые необходимо соблюдать для озвучивания залов и других помещений. Как и в реальности акустические системы можно устанавливать на основание (например: на пол или на сцену), на высоте (подвесные громкоговорители) и встраивать в потолок или в стену.

При расчете программа будет выдавать несколько параметров, по которым можно сформировать благоприятную акустическую картинку.

Звуковое давление - расчет

Данный параметр описывает распределение звукового давления по площади зрительской зоны без учета отражений. Величина неравномерности: разница между максимальным и минимальным значением давления характеризует корректность применения акустических систем и мест их размещения.

Коэффициент потери согласных

Коэффициент потери согласных или ARTICULATION LOSS - графическое отображение потери артикуляции согласных в процентах. Это обратный критерий, 0% - идеальное значение параметра, описывающее отсутствие потери согласных; 100% - наихудшее значение параметра, описывающее полную потерю согласных.

  • от 0% до 7% - наилучший результат;
  • от 7% до 11% - хороший результат;
  • от 11% до 15% - удовлетворительный результат;
  • выше 15% - плохой результат.

В акустике термин "разборчивость" обозначает возможность слышать и правильно различать все фонемы, т.е. составные элементы языка. Разборчивость речи - самый важный параметр при оценке качества воспроизведения звука, и зависит, прежде всего, от правильного понимания согласных букв. Реверберация и высокий уровень фонового шума искажают разборчивость речи. Процент "потерянных" согласных букв дает оценку разборчивости сообщения и обозначается ALCons.

При акустическом сигнале, таком как речь, чрезвычайно изменчивом во времени и при всевозможном шуме окружающей среды, достаточно высокое соотношение сигнал/шум (хотя бы 10 дБ) способствует наилучшему восприятию сообщения. Разборчивость уменьшается при увеличении расстояния между источником и слушателем до предельного расстояния. Для больших расстояний разборчивость остается постоянной, каким бы ни было расстояние до слушателя, но зависит от времени реверберации.

Любое положение слушателя характеризуется определенным значением Alcons. Уменьшение этого значения довольно сложно, т. к. предполагает изменение геометрии помещения и/или имеющихся в нем материалов.

Разборчивость речи

Разборчивость речи оценивается с помощью коэффициента STI . Данный параметр является главным коэффициентом для оценки качества звучания музыкальной системы. Для различных видов помещений или задач существуют свои диапазоны, в предел которых необходимо, чтобы значение коэффициента STI уложилось.

Коэффициент STI зависит от всех параметров: размеры помещения, дальность излучателя звука, уровень шума, зрителей, облицовка помещения, время реверберации, уровень звукового давления.

  • от 0,6 до 1 - наилучший результат;
  • от 0,45 до 0,6 - хороший результат;
  • от 0,3 до 0,45 - Удовлетворительный результат;
  • от 0 до 0,3 - плохой результат.

Коэффициент музыкальной ясности.

Коэффициент музыкальной ясности С80.

  • 0дБ -для органной, романтическая музыки;
  • +2дБ -для классической муз., хора, церковного пения;
  • +4дБ -для поп. Музыки;
  • +6дБ -для рок-н-ролла.

Наша компания производит профессиональный акустический расчет любой сложности, специалисты прошедшие обучение специализированной программы EASE имеют сертификат, который выдается в центре обучения "AFMG" в г. Берлине, что подтверждает ниже предоставленный сертификат:

Акустический расчет помещения необходим для точной установки акустических систем в зале. Так же акустический расчет производится для оптимизации акустических свойств помещения.


Оптимизация расположения громкоговорителей в комнате прямоугольной формы

Для достижения высокого качества звуковоспроизведения, акустические характеристики комнаты для прослушивания необходимо приблизить к определенным оптимальн м значениям. Это достигается формированием "акустически правильной" геометрии помещения, а также с помощью специальной акустической отделки внутренних поверхностей стен и потолка.

Но очень часто приходится иметь дело с комнатой, форму которой изменить уже невозможно. При этом собственные резонансы помещения могут крайне негативно повлиять на качество звучания аппаратуры. Вважным инструментом для снижения влияния комнатных резонансов является оптимизация взаимного расположения акустических систем относительно друг друга, ограждающих конструкций и зоны прослушивания.

Предлагаемые калькуляторы предназначены для расчетов в прямоугольных симметричных помещениях с низким фондом звукопоглощения.


Применение на практике результатов данных расчетов позволит уменьшить влияние комнатных мод, улучшить тональный баланс и выровнять АЧХ системы "АС-комната" на низких частотах.
Необходимо отметить, что результаты расчетов не обязательно приводят к созданию "идеальной" звуковой сцены, они касаются только коррекции акустических дефектов, вызванных, прежде всего, влиянием нежелательных комнатных резонансов.
Но результаты расчетов могут стать хорошей отправной точкой для дальнейшего поиска оптимального месторасположения АС с точки зрения индивидуальных предпочтений слушателя.

Определение площадок первых отражений


Слушатель, находящийся в комнате для прослушивания музыки, воспринимает не только прямой звук, излучаемый акустическими системами, но и отражения от стен, пола и потолка. Интенсивные отражения от некоторых участков внутренних поверхностей комнаты (площадок первых отражений) взаимодействуют с прямым звуком АС, что приводит к изменению частотной характеристики звука, воспринимаемого слушателем. При этом на некоторых частотах происходит усиление звука, а некоторых его значительное ослабление. Этот акустический дефект, называемый "гребенчатой фильтрацией", приводит к нежелательному "окрашиванию" звука.

Управление интенсивностью ранних отражений позволяет улучшить качество звуковой сцены, сделать звучание АС более ясным и детальн м. Наиболее важны ранние отражения от площадок, расположенных на боковых стенах и потолке между зоной прослушивания и АС. Кроме того, большое влияние на качество звука могут оказать отражения от тыловой стены, если зона прослушивания расположена к ней слишком близко.

На участках расположения площадок ранних отражений рекомендуется размещать звукопоглощающие материалы или звукорассеивающие конструкции (акустические диффузоры). Акустическая отделка площадок ранних отражений должна быть адекватна частотному диапазону, в котором более всего наблюдаются акустические искажения (эффект гребенчатой фильтрации).

Линейные размеры применяемых акустических покрытий должны быть на 500-600 мм больше размеров площадок первых отражений. Параметры необходимой акустической отделки в каждом конкретном случае рекомендуется согласовать с инженером-акустиком.

"

Расчет
резонатора Гельмгольца

Резонатор Гельмгольца является колебательной системой с одной степенью свободы, поэтому он обладает способностью отзываться на одну определенную частоту, соответствующую его собственной частоте.

Характерной особенностью резонатора Гельмгольца является его способность совершать низкочастотные собственные колебания, длина волны которых значительно больше размеров самого резонатора.

Это свойство резонатора Гельмгольца используется в архитектурной акустике при создании так называемых щелевых резонансных звукопоглотителей (Slot Resonator). В зависимости от конструкции резонаторы Гельмгольца хорошо поглощают звук на средних и низких частотах.

В общем случае конструкция поглотителя представляет собой деревянный каркас, смонтированный на поверхности стены или потолка. На каркасе закрепляется набор деревянных планок, между которыми оставляются зазоры. Внутреннее пространство каркаса заполняется звукопоглощающим материалом. Резонансная частота поглощения зависит от сечения деревянных планок, глубины каркаса и эффективности звукопоглощения изоляционного материала.

fo = (c/(2*PI))*sqrt(r/((d*1.2*D)*(r+w))) , где

w - ширина деревянной планки,

r - ширина зазора,

d - толщина деревянной планки,

D - глубина каркаса,

с - скорость звука в воздухе.

Если в одной конструкции применять планки различной ширины и закреплять их с неодинаков ми зазорами, а также выполнять каркас с переменной глубиной, можно построить поглотитель, эффективно работающий в широкой полосе частот.

Конструкция резонатора Гельмгольца достаточно проста и может быть собрана из недорогих и доступных материалов непосредственно в музыкальной комнате или в студийном помещении во время производства строительных работ.

"

Расчет панельного НЧ-поглотителя конверсионного типа (НЧКП)

Панельный поглотитель конверсионного типа является достаточно популярным средством акустической обработки музыкальных комнат благодаря простой конструкции и довольно высокой эффективности поглощения в области низких частот. Панельный поглотитель представляет собой жесткий каркас-резонатор с замкнутым объемом воздуха, герметично закрытый гибкой и массивной панелью (мембраной). В качестве материала мембраны, обычно применяют листы фанеры или MDF. Во внутреннее пространство каркаса помещается эффективный звукопоглощающий материал.

Звуковые колебания приводят в движение мембрану (панель) и присоединенный объем воздуха. При этом кинетическая энергия мембраны преобразуется в тепловую энергию за счет внутренних потерь в материале мембраны, а кинетическая энергия молекул воздуха преобразуется в тепловую энергию за счет вязкого трения в слое звукопоглотителя. Поэтому мы называем такой тип поглотителя конверсионным.

Поглотитель представляет собой систему масса-пружина, поэтому он обладает резонансной частотой, на которой его работа наиболее эффективна. Поглотитель может быть настроен на желаемый диапазон частот путем изменения его формы, объема и параметров мембраны. Точн й расчет резонансной частоты панельного поглотителя является сложной математической задачей, и результат зависит от большого количества исходных параметров: способа закрепления мембраны, её геометрических размеров, конструкции корпуса, характеристик звукопоглотителя и т.п.

Тем не менее, использование некоторых допущений и упрощений позволяет достичь приемлемого практического результата.

В таком случае, резонансную частоту fo можно описать следующей оценочной формулой:

fo=600/sqrt(m*d) , где

m - поверхностная плотность мембраны, кг/кв.м

d - глубина каркаса, см

Данная формула справедлива для случая, когда внутреннее пространство поглотителя заполнено воздухом. Если внутрь поместить пористый звукопоглощающий материал, то на частотах ниже 500 Гц процессы в системе перестают быть адиабатическими и формула трансформируется в другое соотношение, которое и применяется в он-лайн калькуляторе "Расчет панельного поглотителя":

fo=500/sqrt(m*d)

Заполнение внутреннего объема конструкции пористным звукопоглощающим материалом снижает добротность (Q) поглотителя, что приводит к расширению его рабочего диапазона и увеличению эффективности поглощения на НЧ. Слой звукопоглотителя не должен прикасаться к внутренней поверхности мембраны, также желательно оставить воздушный зазор между звукопоглотителем и задней стенкой устройства.
Теоретический рабочий диапазон частот панельного поглотителя расположен в пределах +/- одна октава относительно расчетной резонансной частоты.

Необходимо отметить, что в большинстве случаев описанного упрощенного подхода вполне достаточно. Но иногда решение ответственной акустической задачи требует более точного определения резонансных характеристик панельного поглотителя с учетом сложного механизма изгибных деформаций мембраны. Это требует проведения более точных и достаточно громоздких акустических расчетов.

"

Расчет размеров студийных помещений в соответствии с рекомендациями EBU/ITU, 1998

За основу взята методика, разработанная в 1993 году Робертом Волкером (Robert Walker) после серии исследований, проведенных в инженерном департаменте ВВС (Research Department Engineering Division of ВВС). В результате была предложена формула, регулирующая соотношение линейных размеров помещения в достаточно широких пределах.

В 1998 году данная формула была принята в качестве стандарта Европейским Радиовещательн м Союзом (European Broadcasting Union, Technical Recommendation R22-1998) и Международным Телекоммуникационным Союзом (International Telecommunication Union Recommendation ITU-R BS.1116-1, 1998) и рекомендована к применению при строительстве студийных помещений и музыкальных комнат прослушивания.
Соотношение выглядит следующим образом:

1.1w/h <= l/h <= 4.5w/h - 4,

l/h < 3, w/h < 3

где l - длина, w - ширина, и h - высота помещения.

Кроме того, должны быть исключены целочисленные соотношения длинны и ширины помещения к его высоте в пределах +/- 5%.

Все размеры должны соответствовать расстояниям между основными ограждающими конструкциями помещения.

"

Расчет диффузора Шредера

Проведение расчетов в предлагаемом калькуляторе подразумевает ввод данных в диалоговом режиме и дальнейшее выведение результатов на экран в виде диаграммы. Расчет времени реверберации производится по методике, изложенной в СНиП 23-03-2003 "Защита от шума" в октавных полосах частот по формуле Эйринга (Carl F. Eyring):

Т (сек) = 0,163*V / (−ln(1−α)*S + 4*µ*V)

V - объем зала, м3
S - суммарная площадь всех ограждающих поверхностей зала, м2
α - средний коэффициент звукопоглощения в помещении
µ - коэффициент, учитывающий поглощение звука в воздухе

Полученное расчетное время реверберации графически сравнивается с рекомендуемым (оптимальным) значением. Оптимальным называют такое время реверберации, при котором звучание музыкального материала в данном помещении будет наилучшим или при котором разборчивость речи будет наивысшей.

Оптимальные значения времени реверберации нормируются соответствующими международными стандартами:

DIN 18041 Acoustical quality in small to medium-sized rooms, 2004
EBU Tech. 3276 - Listening conditions for sound programme, 2004
IEC 60268-13 (2nd edition) Sound system equipment - Part 13, 1998

Описание:

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Акустический расчет как основа для проектирования малошумной системы вентиляции (кондиционирования)

В. П. Гусев , доктор техн. наук, зав. лабораторией защиты от шума вентиляционного и инженерно-технологического оборудования (НИИСФ)

Действующими в стране нормами и правилами предписано, что в проектах должны быть предусмотрены мероприятия по защите от шума оборудования, используемого для жизнеобеспечения человека. К числу такого оборудования относятся системы вентиляции и кондиционирования воздуха.

Основой для проектирования шумоглушения систем вентиляции и кондиционирования воздуха является акустический расчет - обязательное приложение к проекту вентиляции любого объекта. Основные задачи такого расчета: определение октавного спектра воздушного, структурного вентиляционного шума в расчетных точках и его требуемого снижения путем сопоставления этого спектра с допустимым спектром по гигиеническим нормам. После подбора строительно-акустических мероприятий по обеспечению требуемого снижения шума проводится поверочный расчет ожидаемых уровней звукового давления в тех же расчетных точках с учетом эффективности этих мероприятий.

Приведенные ниже материалы не претендуют на полноту изложения методики акустического расчета вентиляционных систем (установок). Они содержат сведения, которые уточняют, дополняют или по-новому раскрывают различные аспекты этой методики на примере акустического расчета вентилятора как основного источника шума вентиляционной системы. Материалы будут использованы при подготовке свода правил по расчету и проектированию шумоглушения вентиляционных установок к новому СНиП .

Исходными данными для акустического расчета являются шумовые характеристики оборудования - уровни звуковой мощности (УЗМ) в октавных полосах со среднегеометрическими частотами 63, 125, 250, 500, 1 000, 2 000, 4 000, 8 000 Гц. Для ориентировочных расчетов иногда используют корректированные уровни звуковой мощности источников шума в дБА .

Расчетные точки располагаются в местах обитания человека, в частности, на месте установки вентилятора (в вентиляционной камере); в помещениях или в зонах, граничащих с местом установки вентилятора; в помещениях, обслуживаемых системой вентиляции; в помещениях, где воздуховоды проходят транзитом; в зоне устройства приема или выброса воздуха, или только приема воздуха для рециркуляции.

Расчетная точка находится в помещении, где установлен вентилятор

В общем случае уровни звукового давления в помещении зависят от звуковой мощности источника и фактора направленности излучения шума, количества источников шума, от расположения расчетной точки относительно источника и ограждающих строительных конструкций, от размеров и акустических качеств помещения.

Октавные уровни звукового давления, создаваемые вентилятором (вентиляторами) в месте установки (в венткамере), равны:

где Фi - фактор направленности источника шума (безразмерный);

S - площадь воображаемой сферы или ее части, окружающей источник и проходящей через расчетную точку, м 2 ;

B - акустическая постоянная помещения, м 2 .

Расчетная точка находится в помещении, смежном с помещением, где установлен вентилятор

Октавные уровни воздушного шума, проникающего через ограждение в изолируемое помещение, смежное с помещением, где установлен вентилятор, определяются звукоизолирующей способностью ограждений шумного помещения и акустическими качествами защищаемого помещения, что выражается формулой :

(3)

где L ш - октавный уровень звукового давления в помещении с источником шума, дБ;

R - изоляция от воздушного шума ограждающей конструкцией, через которую проникает шум, дБ;

S - площадь ограждающей конструкции, м 2 ;

B u - акустическая постоянная изолируемого помещения, м 2 ;

k - коэффициент, учитывающий нарушение диффузности звукового поля в помещении.

Расчетная точка находится в помещении, обслуживаемом системой

Шум от вентилятора распространяется по воздуховоду (воздушному каналу), частично затухает в его элементах и через воздухораспределительные и воздухоприемные решетки проникает в обслуживаемое помещение. Октавные уровни звукового давления в помещении зависят от величины снижения шума в воздушном канале и акустических качеств этого помещения:

(4)

где L Pi - уровень звуковой мощности в i-й октаве, излучаемой вентилятором в воздушный канал;

D L сетиi - затухание в воздушном канале (в сети) между источником шума и помещением;

D L помi - то же, что в формуле (1) - формула (2).

Затухание в сети (в воздушном канале) D L Р сети - сумма затуханий в ее элементах, последовательно расположенных по ходу звуковых волн. Энергетическая теория распространения звука по трубам предполагает, что эти элементы не влияют друг на друга. В действительности последовательность фасонных элементов и прямых участков образуют единую волновую систему, при которой на чистых синусоидальных тонах принцип независимости затухания в общем случае не может оправдываться. Вместе с тем, в октавных (широких) полосах частот стоячие волны, создаваемые отдельными синусоидальными составляющими, компенсируют друг друга, и поэтому энергетический подход, не учитывающий волновой картины в воздуховодах и рассматривающий поток звуковой энергии, можно считать оправданным.

Затухание на прямых участках воздуховодов из листового материала обусловлено потерями на деформацию стенок и излучение звука наружу. О снижении уровня звуковой мощности D L Р на 1 м длины прямых участков металлических воздуховодов в зависимости от частоты можно судить по данным рис. 1.

Как видно, в воздуховодах прямоугольного сечения затухание (снижение УЗМ) с ростом частоты звука уменьшается, а круглого сечения возрастает. При наличии теплоизоляции на металлических воздуховодах приведенные на рис. 1 значения следует увеличивать примерно в два раза.

Понятие затухание (снижение) уровня потока звуковой энергии нельзя отождествлять с понятием изменения уровня звукового давления в воздушном канале. При движении звуковой волны по каналу общее количество энергии, которую она несет, уменьшается, но это не обязательно связано с уменьшением уровня звукового давления. В сужающемся канале, несмотря на затухание общего потока энергии, уровень звукового давления может увеличиваться вследствие увеличения плотности звуковой энергии. В расширяющемся канале, наоборот, плотность энергии (и уровень звукового давления) может уменьшаться быстрее, чем общая звуковая мощность. Затухание звука на участке с переменным сечением равно :

(5)

где L 1 и L 2 - средние уровни звукового давления в начальном и конечном по ходу звуковых волн сечениях участка канала;

F 1 и F 2 - площади поперечных сечений соответственно в начале и конце участка канала.

Затухание на поворотах (в коленах, отводах) с гладкими стенками, поперечное сечение которых меньше длины волны, определяется реактивным сопротивлением типа дополнительной массы и возникновением мод более высокого порядка. Кинетическая энергия потока на повороте без изменения сечения канала увеличивается из-за возникающей неравномерности поля скоростей. Прямоугольный поворот действует подобно фильтру низких частот. Величину снижения шума на повороте в диапазоне плоских волн дает точное теоретическое решение :

(6)

где K - модуль коэффициента прохождения звука.

При a ≥ l /2 величина K равна нулю и падающая плоская звуковая волна теоретически полностью отражается поворотом канала. Максимальное снижение шума наблюдается, когда глубина поворота равна примерно половине длины волны. О величине теоретического модуля коэффициента прохождения звука через прямоугольные повороты можно судить по рис. 2.

В реальных конструкциях по данным работ максимальное затухание равно 8-10 дБ, когда в ширине канала укладывается половина длины волны. С повышением частоты затухание уменьшается до 3-6 дБ в области длин волн, близких по величине к удвоенной ширине канала. Затем оно снова плавно возрастает на высоких частотах, достигая 8-13 дБ. На рис. 3 показаны кривые затухания шума на поворотах каналов для плоских волн (кривая 1) и для случайного, диффузного падения звука (кривая 2). Эти кривые получены на основе теоретических и экспериментальных данных. Наличие максимума снижения шума при a = l /2 можно использовать для снижения шума с низкочастотными дискретными составляющими, настраивая размеры каналов на поворотах на интересующую частоту.

Снижение шума на поворотах, угол которых меньше 90°, приближенно пропорционально величине угла поворота. Например, уменьшение уровня шума на повороте с углом 45° равно половине его уменьшения на повороте с углом 90°. На поворотах с углом меньше 45° уменьшение шума не учитывается. Для плавных поворотов и прямых колен воздуховодов с направляющими лопатками снижение шума (уровня звуковой мощности) можно определить, пользуясь кривыми рис. 4.

В разветвлениях каналов, поперечные размеры которых меньше половины длины звуковой волны, физические причины затухания аналогичны причинам затухания в коленах и отводах. Это затухание определяется следующим образом (рис. 5).

На основании уравнения неразрывности среды:

Из условия непрерывности давления (r п + r 0 = r пр) и уравнения (7) прошедшая звуковая мощность может быть представлена выражением

а снижение уровня звуковой мощности при площади сечения ответвления

(11)

(12)

(13)

При внезапном изменении сечения канала с поперечными размерами меньше длин полуволн (рис. 6 а), снижение уровня звуковой мощности может быть определено так же, как при разветвлениях.

Расчетная формула для такого изменения сечения канала имеет вид

(14)

где m - отношение большей площади сечения канала к меньшей.

Снижение уровней звуковой мощности, когда размеры каналов больше длины полуволн неплоских волн при внезапном сужении канала, равно

Если канал расширяется или плавно сужается (рис. 6 б и 6 г), то снижение уровня звуковой мощности равно нулю, т. к. отражение волн с длиной, меньшей размеров канала, не происходит.

В простых элементах вентиляционных систем принимают следующие величины снижения на всех частотах: калориферы и воздухоохладители 1,5 дБ, центральные кондиционеры 10 дБ, сетчатые фильтры 0 дБ, место примыкания вентилятора к сети воздуховодов 2 дБ .

Отражение звука от конца воздуховода происходит в том случае, если поперечный размер воздуховода меньше длины звуковой волны (рис. 7).

Если распространяется плоская волна, то в большом воздуховоде отражение отсутствует, и можно считать, что потерь на отражение нет. Однако если проем соединяет помещение больших размеров и открытое пространство, то в проем попадают только диффузные звуковые волны, направленные к проему, энергия которых равна четвертой части энергии диффузного поля. Поэтому в данном случае происходит ослабление уровня интенсивности звука на 6 дБ.

Характеристики направленности излучения звука воздухораспределительными решетками указаны на рис. 8.

При расположении источника шума в пространстве (например, на колонне в большом помещении) S = 4p r 2 (излучение в полную сферу); в средней части стены, перекрытия S = 2p r 2 (излучение в полусферу); в двугранном углу (излучение в 1/4 сферы) S = p r 2 ; в трехгранном углу S = p r 2 /2.

Ослабление уровня шума в помещении определяется формулой (2). Расчетная точка выбирается в месте постоянного пребывания людей, ближайшем к источнику шума, на расстоянии 1,5 м от пола. Если шум в расчетной точке создается несколькими решетками, то акустический расчет производится с учетом их суммарного воздействия.

Когда источником шума является участок транзитного воздуховода, проходящего через помещение, исходными данными для расчета по формуле (1) служат октавные уровни звуковой мощности излучаемого им шума, определяемые по приближенной формуле:

(16)

где L pi - уровень звуковой мощности источника в i-й октавной полосе частот, дБ;

D L’ Рсетиi - затухание в сети между источником и рассматриваемом транзитным участком, дБ;

R Ti - звукоизоляция конструкции транзитного участка воздуховода, дБ;

S T - площадь поверхности транзитного участка, выходящая в помещение, м 2 ;

F T - площадь поперечного сечения участка воздуховода, м 2 .

Формула (16) не учитывает повышения плотности звуковой энергии в воздуховоде за счет отражений; условия падения и прохождения звука через конструкцию воздуховода существенно отличаются от прохождения диффузного звука через ограждения помещения.

Расчетные точки находятся на прилегающей к зданию территории

Шум вентилятора распространяется по воздуховоду и излучается в окружающее пространство через решетку или шахту, непосредственно через стенки корпуса вентилятора или открытый патрубок при установке вентилятора снаружи здания.

При расстоянии от вентилятора до расчетной точки много больше его размеров источник шума можно считать точечным.

В этом случае октавные уровни звукового давления в расчетных точках определяются по формуле

(17)

где L Pоктi - октавный уровень звуковой мощности источника шума, дБ;

D L Pсетиi - суммарное снижение уровня звуковой мощности по пути распространения звука в воздуховоде в рассматриваемой октавной полосе, дБ;

D L нi - показатель направленности излучения звука, дБ;

r - расстояние от источника шума до расчетной точки, м;

W - пространственный угол излучения звука;

b a - затухание звука в атмосфере, дБ/км.

Если имеется ряд из нескольких вентиляторов, решеток или другой протяженный источник шума ограниченных размеров, то третий член в формуле (17) принимается равным 15 lgr .

Расчет структурного шума

Структурный шум в помещениях, смежных с вентиляционными камерами, возникает в результате передачи динамических сил от вентилятора на перекрытие. Октавный уровень звукового давления в смежном изолируемом помещении определяют по формуле

Для вентиляторов, расположенных в техническом помещении вне пределов перекрытия над изолируемым помещением:

(20)

где L Pi - октавный уровень звуковой мощности воздушного шума, излучаемого вентилятором в вентиляционную камеру, дБ;

Z c - суммарное волновое сопротивление элементов виброизоляторов, на которых установлена холодильная машина, Н с/м;

Z пер - входной импеданс перекрытия - несущей плиты, в отсутствие пола на упругом основании, плиты пола - при его наличии, Н с/м;

S - условная площадь перекрытия технического помещения над изолируемым помещением, м 2 ;

S = S 1 при S 1 > S u /4; S = S u /4; при S 1 ≤ S u /4, или если техническое помещение не находится над изолируемым помещением, но имеет одну общую с ним стену;

S 1 - площадь технического помещения над изолируемым помещением, м 2 ;

S u - площадь изолируемого помещения, м 2 ;

S в - общая площадь технического помещения, м 2 ;

R - собственная изоляция воздушного шума перекрытием, дБ.

Определение требуемого снижения шума

Требуемое снижение октавных уровней звукового давления рассчитывают отдельно для каждого источника шума (вентилятора, фасонных элементов, арматуры), но при этом учитывают число однотипных по спектру звуковой мощности источников шума и величины уровней звукового давления, создаваемых каждым из них в расчетной точке. В общем случае требуемое снижение шума для каждого источника должно быть таким, чтобы суммарные уровни во всех октавных полосах частот от всех источников шума не превышали допустимые уровни звукового давления .

При наличии одного источника шума требуемое снижение октавных уровней звукового давления определяется по формуле

где n - общее количество принимаемых в расчет источников шума.

В общее количество источников шума n при определении D L трi требуемого снижения октавных уровней звукового давления на территории городской застройки следует включать все источники шума, которые создают в расчетной точке уровни звукового давления, отличающиеся менее чем на 10 дБ.

При определении D L трi для расчетных точек в помещении, защищаемом от шума системы вентиляции, в общее количество источников шума следует включать:

При расчете требуемого снижения шума вентилятора - количество систем, обслуживающих помещение; шум, генерируемый воздухораспределительными устройствами и фасонными элементами, при этом не учитывается;

При расчете требуемого снижения шума, генерируемого воздухораспределительными устройствами рассматриваемой вентиляционной системы, - количество систем вентиляции, обслуживающих помещение; шум вентилятора, воздухораспределительных устройств и фасонных элементов при этом не учитывается;

При расчете требуемого снижения шума, генерируемого фасонными элементами и воздухораспределительными устройствами рассматриваемого ответвления, - количество фасонных элементов и дросселей, уровни шума которых отличаются один от другого менее чем на 10 дБ; шум вентилятора и решеток при этом не учитывается.

Вместе с тем в общем количестве принимаемых в расчет источников шума не учитываются источники шума, создающие в расчетной точке уровень звукового давления на 10 дБ меньшие, чем допустимый, при их количестве не более 3 и на 15 дБ меньше допустимого при их числе не более 10.

Как видно, акустический расчет - не простая задача. Необходимую точность ее решения обеспечивают специалисты-акустики. От точности выполняемого акустического расчета зависит эффективность шумоглушения и стоимость его осуществления. Если величина рассчитанного требуемого снижения шума занижена, то мероприятия будут недостаточно эффективны. В этом случае потребуется устранение недостатков на действующем объекте, что неизбежно связано с существенными материальными затратами. При завышенном требуемом снижении шума неоправданные затраты закладываются непосредственно в проект. Так, только за счет установки глушителей, длина которых больше требуемой на 300-500 мм, дополнительные затраты на средних и крупных объектах могут составить 100-400 тысяч рублей и более.

Литература

1. СНиП II-12-77. Защита от шума. М.: Стройиздат, 1978.

2. СНиП 23-03-2003. Защита от шума. Госстрой России, 2004.

3. Гусев В. П. Акустические требования и правила проектирования малошумных систем вентиляции // АВОК. 2004. № 4.

4. Руководство по расчету и проектированию шумоглушения вентиляционных установок. М.: Стройиздат, 1982.

5. Юдин Е. Я., Терехин А. С. Борьба с шумом шахтных вентиляционных установок. М.: Недра, 1985.

6. Снижение шума в зданиях и жилых районах. Под ред. Г. Л. Осипова, Е. Я. Юдина. М.: Стройиздат, 1987.

7. Хорошев С. А., Петров Ю. И., Егоров П. Ф. Борьба с шумом вентиляторов. М.: Энергоиздат, 1981.