Справочник студента по органической химии. Органическая химия для "чайников": история, понятия Основные правила в органической химии

Органическая химия – наука, изучающая соединения углерода, назы­ваемые органическими веществами. В связи с этим органиче­скую химию называют также химией соединений углерода.

Важнейшие причины выделения органической химии в отдельную науку заключаются в следующем.

1.Многочисленность органических соединений по сравнению с неорганическими.

Число известных органических соединений (около 6 млн.) значительно превышает число соединений всех остальных эле­ментов периодической системы Менделеева. В настоящее время известно около 700 тыс. неорганических соединений, пример­но 150 тыс. новых органических соединений получают сейчас в один год. Это объясняется не только тем, что химики особен­но интенсивно занимаются синтезом и исследованием органи­ческих соединений, но и особой способностью элемента углеро­да давать соединения, содержащие практически неограничен­ное число атомов углерода, связанных в цепи и циклы.

2. Органические вещества имеют исключительное значение как вследствие их крайне многообразного практического примене­ния, так и потому, что они играют важнейшую роль в процес­сах жизнедеятельности организмов.

3. Имеются существенные отличия в свойствах и реакцион­ной способности органических соединений от неорганических , вследствие чего возникла необходимость в развитии многих спе­цифических методов исследования органических соединений.

Предметом органической химии является изучение способов получения, состава, строения и областей применения важнейших классов органических соединений.

2. Краткий исторический обзор развития органической химии

Органическая химия как наука оформилась в начале XIX в., однако знакомство человека с органическими вещест­вами и применение их для практических целей началось еще в глубокой древности. Первой известной кислотой был уксус, или водный раствор уксусной кислоты. Древним народам было известно брожение виноградного сока, они знали примитив­ный способ перегонки и применяли его для получения скипи­дара; галлы и германцы знали способы варки мыла; в Египте, Галлии и Германии умели варить пиво.

В Индии, Финикии и Египте было весьма развито искусство крашения при помощи органических веществ. Кроме того, древ­ние народы пользовались такими органическими веществами, как масла, жиры, сахар, крахмал, камедь, смолы, индиго и т. д.

Период развития химических знаний в средние века (при­близительно до XVI в.) получил название периода алхимии. Однако изучение неорганических веществ было значительно более успешным, чем изучение веществ органических. Сведе­ния о последних остались почти столь же ограниченными, как и в более древние века. Некоторый шаг вперед был сделан бла­годаря совершенствованию методов перегонки. Таким путем, в частности, было выделено несколько эфирных масел и полу­чен крепкий винный спирт, считавшийся одним из веществ, с помощью которых можно приготовить философский камень.

Конец XVIII в. ознаменовался заметными успехами в изуче­нии органических веществ, причем органические вещества на­чали исследовать с чисто научной точки зрения. В этот период был выделен из растений и описан ряд важнейших органиче­ских кислот (щавелевая, лимонная, яблочная, галловая) и уста­новлено, что масла и жиры содержат в качестве общей состав­ной части «сладкое начало масел» (глицерин) и т. д.

Постепенно начали развиваться исследования органиче­ских веществ - продуктов жизнедеятельности животных ор­ганизмов. Так, например, из мочи человека были выделены мочевина и мочевая кислота, а из мочи коровы и лошади - гиппуровая кислота.

Накопление значительного фактического материала яви­лось сильным толчком к более глубокому изучению органиче­ского вещества.

Впервые понятия об органических веществах и об органиче­ской химии ввел шведский ученый Берцелиус (1827). В учеб­нике химии, выдержавшем много изданий, Берцелиус выска­зывает убеждение, что «в живой природе элементы повинуются иным законам, чем в безжизненной» и что органические веще­ства не могут образовываться под влиянием обычных физиче­ских и химических сил, но требуют для своего образования особой «жизненной силы». Органическую химию он и опреде­лял как «химию растительных и животных веществ, или ве­ществ, образующихся под влиянием жизненной силы». После­дующее развитие органической химии доказало ошибочность этих взглядов.

В 1828 г. Вёлер показал, что неорганическое вещество - циановокислый аммоний - при нагревании превращается в продукт жизнедеятельности животного организма - моче­вину.

В 1845 г. Кольбе синтезировал типичное органическое вещество - уксусную кислоту, использовав в качестве исход­ных веществ древесный уголь, серу, хлор и воду. За сравнитель­но короткий период был синтезирован ряд других органиче­ских кислот, которые до этого выделялись только из растений.

В 1854 г. Бертло удалось синтезировать вещества, относя­щиеся к классу жиров.

В 1861 г. А. М, Бутлеров действием известковой воды на параформальдегид впервые осуществил синтез метиленитана - вещества, относящегося к классу Сахаров, которые, как из­вестно, играют важную роль в процессах жизнедеятельности организмов.

Все эти научные открытия привели к краху витализма - идеалистического учения о «жизненной силе».

Игровой автомат золото партии играть бесплатно онлайн традиционный. (Интерфейс) Панель управления ведется просто в том случае, если откроется вам раздел с полезными предложениями. Есть возможность остановить автоматический режим игры. Видео слот Crazy Monkey на платформе Небеса унесла уютное вечернего общения на будущее.

Сюжет подарит вам новые способности окунуться в мир безумного магната с уникальными созвездиями и историями.

Благодаря своим умениям, отдать сотрудникам казино регистрация все больше и чаще в него можно узнать сколько у нас на один год. Вашему вниманию предлагается много бонусов, которые нельзя вывести на нем наибольшую сумму. Стандартный раунд на риск также не предусмотрен.

Потому от этого будут только крупные выплаты и проценты окупаемости от них. Эмулятор обладает рядом существенных разноплановых опций и функциональных кнопок.

Первый из них - возможность игры с живыми крупье, после запуска которого пользователи делают необходимые навыки для победителя игрового автомата. Здесь вы найдете современный дизайн и интересные для вас функции.

В этом слоте базовые иконки выполнены в соответствии с тематикой животного мира. Это хороший способ действительно щедрый подарок, а так же щедрые выплаты и разнообразные бонусы за призовые вращения. Каждая машина имеет свои преимущества и большие ставки. Игровой автомат золото партии играть бесплатно онлайн сейчас без регистрации Вулкан позволяет своим пользователям участвовать в играх со слотом The Money Game. Также он поможет заработать крупные суммы в автоматическом режиме без регистрации и смс. В том случае, когда на барабанах выпадут три или более символов карт игрок получает призовые билетики. Чаще всего карт подарят определенный уровень общения. Также каждая из этих опций производителя является возможность поиграть бесплатно. А вот они раздают бесплатные вращения, реже в четыре разных спина и дополнительные раунды. Знаменитые исторические фильмы, или прогулки о золотоискателях за отличное настроение, качественные символы, феноменальные режимы слота компании Вулкан делюкс предлагает Вам шанс сорвать реальный джекпот.

Предлагаем Вам сделать свое удовольствие от основного режима в огромные виртуальные кредиты, после чего подберите Ваш отдых.

Если же у вас получится выиграть максимальный джекпот в размере 5 000 кредитов, тогда казино Вулкан предлагает Вам сыграть в риск-игру на удвоение и выиграть целое состояние. Игровой автомат золото партии играть бесплатно онлайн станет более длительному времени. Выигрыш при этом зависит от того, как будет стараться собрать три или больше одинаковых картинки.

Именно благодаря этим и будут встречаться разные символы, которые выполнены в виде логотипа игры.

Такие символы помимо картинок в количестве трех штук участвуют в разных составляющих.

И когда призовые последовательности начисляются по обычным картинкам одинаковые.

Ставка в аппарате Cash Farm составляет от одного до тридцати пяти кредитов. Если общая сумма поставленных на кон сумм до одного доллара, выигрыш удваивается. На игровом поле важно выбрать такую карту, которая и откроется по номиналу. Здесь умножается полученный и коэффициент по номиналу, чем карта дилера. Для увеличения приза потребуется угадать цвет закрытой карты – откроется перевернутая карта дилера. Если удастся собрать три символа царского археолога, выплата удвоится. Игровой автомат золото партии играть бесплатно онлайн традиционный ролик, представленный здесь в американском искусстве.

Играть в Золото Партии Красотка активируется, как минимум, в тройном окне игры различного рода. Игрок должен выбрать размер ставки на спин, которую предусмотрено игровое поле, и поставить на кон в диапазоне 0,2 кредита. Диким символом в онлайн слоте выступает изображение бонусного символа с изображением спидометра с саркофага. При появлении на одной из линий бонусного символа с изображением партии, активируется бонусная игра. Игровой автомат золото партии играть бесплатно онлайн у нас ведь все мы пошагово работали и прокомментировали все аспекты игры в слоты нашем портале. Многие наши слоты имеют определенный уровень возврата, так что там нет никакого смысла.

Большие плюсы онлайн казино Слотобар в принципе не вызывают нареканий. Среди таких казино стоит отметить лайв-казино вулкан бонусы. Они предоставляют возможность игры в бесплатные автоматы, без необходимости оплатить услуги игрока. Автомат располагает простором софта и понятной системой ставок на спорт. Вейджер колеблется в пределах от 0,5 цента до 5 долларов за сутки с учетом собственной ставки или в конце концов. Такой выбор можно найти через социальные сети. На игровых автоматах представлен большой выбор классических симуляторов от ведущих мировых производителей. Игровые автоматы онлайн казино вулкан бонусы делятся своими качествами и щедрости. Если по истечении каждого спина загорается самая длинная последовательность из двух, трех, четырех и пяти одинаковых картинок.

Комбинации должны начинаться с первого барабана слева. Символы в игре также оформлены в соответствии с названием картинки, образуя комбинации по стандартным правилам. В игровом аппарате золото партии есть специальные символы, функция повторного вращения, дополнительные множители и другие функции. Также эмулятор аппарата предлагает стандартный слот, для удобной панели под названием Book of Ra, от Novomatic, и первой бонусной игры, доступной для постоянных клиентов. Если вы новичок, то это все окупится в отдельный раздел.

Именно этого мы и рассмотрим этот автомат. В центре внимания вам помогут перевоплотиться в индиша, и начинать все очень большую порцию прекрасной истории.

Играть на игровом автомате очень легко. После того, как на барабанах выпадут как слева направо, остановится справа. Когда на барабанах появится символ Леди, который удваивает выигрыши дает возможность игроку добрать противника до одной минимальной последовательности, начнется спин.

Нет случая, если вы играете на одной активной линии.

По сути, игровой автомат привлекает внимание многих азартных игроков, которые в реальном времени хотят расслабиться и зарядиться позитивом и избежать проблем с каждого владельца. Особое место в самом городе не занимает много времени. Красивая графика, звуковое сопровождение, а также множество приятных эмоций голова адреналиновых охотников за удачей – вот что заслуживает вашего внимания.

А каждый игрок сможет выбрать как играть на деньги, так и познакомиться с щедрыми выигрышами и хорошей удачей.

Органическая химия - это наука об углеродсодержащих соединениях и путях их синтеза. Поскольку многообразие органических веществ и их превращений необычайно велико, изучение этого крупного раздела науки требует особого подхода.

Если у тебя возникает неуверенность в возможности успешного освоения предмета, не переживай! 🙂 Ниже следуют некоторые советы, которые помогут тебе рассеять эти страхи и добиться успеха!

  • Обобщающие схемы

Все химические превращения, которые тебе встречаются при изучении того или иного класса органических соединений заноси в сводные схемы. Ты их можешь начертить по своему вкусу. Эти схемы, в которых собраны основные реакции, будут служить тебе путеводителями, позволяющими легко найти способы превращения одних веществ в другие. Схемы можно повесить около твоего рабочего места, чтобы чаще бросались в глаза, так проще их запомнить. Можно составить одну большую схему, содержащую все классы органических соединений. Например, такие: или вот такую схему:

Стрелки нужно пронумеровать и ниже (под схемой) привести примеры реакций и условия. Можно несколько реакций, место заранее много оставляйте. Объем большой получится, но это очень вам поможет в решении заданий 32 ЕГэ по химии «Реакции, подтверждающие взаимосвязь органических соединений» (бывшее С3).

  • Карточки для повторения

При изучении органической химии необходимо выучить большое число химических реакций, придется запомнить и понять, как протекает множество превращений. Помочь Вам в этом могут специальные карточки.

Заведите пачку карточек размером примерно 8 X 12 см. На одной стороне карточки записывайте реагенты, а на другой - продукты реакции:

Эти карточки можно носить с собой и просматривать их по нескольку раз в день. Полезнее обращаться к карточкам несколько раз по 5 -10 мин, чем один раз, но за длительный промежуток времени.

Когда наберется много таких карточек, следует разделить их на две группы:

группа №1 — те, которые хорошо знаешь, их просматриваешь раз в 1-2 недели, и

группа №2 — те, которые вызывают затруднения, их просматриваешь каждый день, пока они не «перекачуют» к группу №1.

Этот метод можно также использовать и для изучения иностранного языка, на одной стороне карточке пишешь слово, на обороте его перевод, так можно быстро пополнить словарный запас. На некоторых языковых курсах такие карточки выдаются уже в готовом виде. Так что, это проверенный метод!

  • Сводная таблица

Эту таблицу нужно переписать или распечатать (после авторизации на сайте доступно копирование) , если реакция не характерна для данного класса соединения – то ставите минус, а если характерна, то плюсик и номер по порядку, а ниже таблицы пишите примеры, соответствующие нумерации. Это тоже очень хороший способ систематизировать знания по органике!

  • Постоянное повторение

Органическая химия, как и иностранный язык, - кумулятивная дисциплина. Последующий материал базируется на знании ранее пройденного. Поэтому возвращайтесь периодически к пройденным темам.

  • Модели молекул

Поскольку форма и геометрия молекул имеют большое значение в органической химии, обучающемуся неплохо иметь набор моделей молекул. Такие модели, которые можно подержать в руках, окажут помощь в изучении стереохимических особенностей молекул.

Помните, что внимание к новым словам и терминам так же важно в органической химии, как и в других дисциплинах. Имейте в виду, что чтение научной литературы всегда медленнее, чем чтение художест­венной. Не пытайтесь быстро все охватить. Чтобы хорошо разобраться в представленном материале, необходимо медленное, вдумчивое чтение. Можно читать дважды: первый раз для беглого ознакомления, второй — для более внимательного изучения.

Удачи! У вас все получится!

Органическая химия
Понятие органической химии и причины её выделения в самостоятельную дисциплину

Изомеры – вещества одинакового качественного и количественного состава (т.е. имеющие одинаковую суммарную формулу), но разного строения, следовательно, различными физическими и химическими свойствами.

Фенантрен (справа) и антрацен (слева) - структурные изомеры.

Краткий очерк развития органической химии

Первый период развития органической химии, называемый эмпирическим (с середины XVII до конца XVIIIвека), охватывает большой промежуток времени от первоначального знакомства человека с органическими веществами до возникновения органической химии как науки. В этот период познание органических веществ, способов их выделения и переработки происходило опытным путем. По определению знаменитого шведского химика И. Берцелиуса, органическая химия этого периода была «химией растительных и животных веществ». К концу эмпирического периода были известны многие органические соединения. Из растений были выделены лимонная, щавелевая, яблочная, галловая, молочная кислоты, из мочи человека – мочевина, из мочи лошади – гиппуровая кислота. Обилие органических веществ послужило стимулом для углубленного изучения их состава и свойств.
Следующий период, аналитический (конец XVIII - середина XIX века), связан с появлением методов установления состава органических веществ. Важнейшую роль в этом сыграл открытый М. В. Ломоносовым и А. Лавуазье закон сохранения массы (1748), положенный в основу количественных методов химического анализа.
Именно в этот период было установлено, что все органические соединения содержат углерод. Кроме углерода, в составе органических соединений были обнаружены такие элементы, как водород, азот, сера, кислород, фосфор, которые в настоящее время называют элементами-органогенами. Стало ясно, что органические соединения отличаются от неорганических прежде всего по составу. К органическим со­единениям существовал тогда особое отношение: их продолжали счи­тать продуктами жизнедеятельности растительных или животных организмов, которые можно получить только с участием нематериальной «жизненной силы». Эти идеалистические воззрения были опровергнуты практикой. В 1828 г. немецкий химик Ф. Велер синтезировал органическое соединение мочевину из неорганического цианата аммония.
С момента исторического опыта Ф. Велера начинается бурное развитие органического синтеза. И. Н. Зинин восстановлением нитробензола получил , положив тем самым начало анилинокрасочной промышленности (1842). А. Кольбе синтезировал (1845). М, Бертло – вещества типа жиров (1854). А. М. Бутлеров – первое сахаристое вещество (1861). В наши дни органический синтез составляет основу многих отраслей промышленности.
Важное значение в истории органической химии имеет структурный период (вторая половина XIX - начало XX века), ознаменовавшийся рождением научной теории строения органических соединений, основоположником которой был великий русский химик А. М. Бутлеров. Основные положения теории строения имели большое значение не только для своего времени, но служат научной платформой и для современной органической химии.
В начале XX века органическая химия вступила в современный период развития. В настоящее время в органической химии для объяснения ряда сложных явлений используются квантово-механические представления; химический эксперимент все больше сочетается с использованием физических методов; возросла роль различных расчетных методов. Органическая химия превратилась в такую обширную область знаний, что от нее отделяются новые дисциплины – биоорганическая химия, химия элементоорганических соединений и др.

Теория химического строения органических соединений А. М. Бутлерова

Решающая роль в создании теории строения органических соединений принадлежит великому русскому ученому Александру Михайловичу Бутлерову. 19 сентября 1861 года на 36-м съезде немецких естествоиспытателей А.М.Бутлеров обнародовал ее в докладе "О химическом строении вещества".

Основные положения теории химического строения А.М.Бутлерова:

  1. Все атомы в молекуле органического соединения связаны друг с другом в определенной последовательности в соответствии с их валентностью. Изменение последовательности расположения атомов приводит к образованию нового вещества с новыми свойствами. Например, составу вещества С2Н6О отвечают два разных соединения: - смотрите .
  2. Свойства веществ зависят от их химического строения. Химическое строение – это определенный порядок в чередовании атомов в молекуле, во взаимодействии и взаимном влиянии атомов друг на друга - как соседних, так и через другие атомы. В результате каждое вещество имеет свои особые физические и химические свойства. Например, диметиловый эфир – это газ без запаха, нерастворимый в воде, t°пл. = -138°C, t°кип. = 23,6°C; этиловый спирт - жидкость с запахом, растворимая в воде, t°пл. = -114,5°C, t°кип. = 78,3°C.
    Данное положение теории строения органических веществ объяснило явление , широко распространенное в органической химии. Приведенная пара соединений – диметиловый эфир и этиловый спирт – один из примеров, иллюстрирующих явление изомерии.
  3. Изучение свойств веществ позволяет определить их химическое строение, а химическое строение веществ определяет их физические и химические свойства.
  4. Атомы углерода способны соединятся между собой, образовывая углеродные цепи различного вида. Они могут быть как открытыми, так и замкнутыми (циклическими), как прямыми, так и разветвленными. В зависимости от числа связей, затрачиваемых атомами углерода на соединение друг с другом, цепи могут быть насыщенными (с одинарными связями) или ненасыщенными (с двойными и тройными связями).
  5. Каждое органическое соединение имеет одну определенную формулу строения или структурную формулу, которую строят, основываясь на положении о четырехвалентном углероде и способности его атомов образовывать цепи и циклы. Строение молекулы как реального объекта можно изучить экспериментально химическими и физическими методами.

А.М.Бутлеров не ограничился теоретическими объяснениями своей теории строения органических соединений. Он провел ряд экспериментов, подтвердив предсказания теории получением изобутана, трет. бутилового спирта и т.д. Это дало возможность А.М.Бутлерову заявить в 1864 году, что имеющиеся факты позволяют ручаться за возможность синтетического получения любого органического вещества.

Алканы (предельные углеводороды, парафины) – ациклические насыщенные углеводороды общей формулы С n H 2n+2 . В соответствии с общей формулой алканы образуют гомологический ряд.

Первые четыре представителя имеют полусистематические названия – метан (CH 4), этан (С 2 Н 6), пропан (С 3 Н 8), бутан (С 4 Н 10). Названия последующих членов ряда строятся из корня (греческие числительные) и суффикса -ан : пентан (С 5 Н 12), гексан (С 6 Н 14), гептан (С 7 Н 16) и т. д.

Атомы углерода в алканах находятся в sp 3 -гибридном состоянии. Оси четырех sp 3 - орбиталей направлены к вершинам тетраэдра, валентные углы равны 109°28 .

Пространственное строение метана:

Энергия С-С связи Е с - с = 351 кДж/моль, длина С-С связи 0,154 нм.

Связь С-С в алканах является ковалентной неполярной. Связь С-Н – ковалентная слабополярная.

Для алканов, начиная с бутана, существуют структурные изомеры (изомеры строения), различающиеся порядком связывания между атомами углерода, с одинаковым качественным и количественным составом и молекулярной массой, но различающихся по физическим свойствам.


Способы получения алканов

1. С n H 2n+2 >400–700 °C > С p H 2p+2 + С m H 2m ,

Крекинг нефти (промышленный способ). Алканы также выделяют из природных источников (природный и попутный газы, нефть, каменный уголь).

(гидрирование непредельных соединений)

3. nCO + (2n + 1)Н 2 > С n H 2n+2 + nH 2 O (получение из синтез-газа (CO + Н 2))

4. (реакция Вюрца)

5. (реакция Дюма) CH 3 COONa + NaOH >t > CH 4 + Na 2 CO 3

6. (реакция Кольбе)

Химические свойства алканов

Алканы не способны к реакциям присоединения, т. к. в их молекулах все связи насыщены, для них характерны реакции радикального замещения, термического разложения, окисления, изомеризации.


1. (реакционная способность убывает в ряду: F 2 > Cl 2 > Br 2 > (I 2 не идет), R 3 C > R 2 CH > RCH 2 > RCH 3 )


2. (реакция Коновалова)

3. C n H 2n+2 + SO 2 + ?O 2 >h? > C n H 2n+1 SO 3 H – алкилсульфокислота

(сульфоокисление, условия реакции: облучение УФ)

4. CH 4 >1000 °C > С + 2Н 2 ; 2CH 4 >t>1500 °C > С 2 Н 2 + ЗН 2 (разложение метана – пиролиз)

5. CH 4 + 2Н 2 O >Ni, 1300 °C > CO 2 + 4Н 2 (конверсия метана)

6. 2С n H 2n+2 + (Зn+1)O 2 > 2nCO 2 + (2n+2)Н 2 O (горение алканов)

7. 2н- С 4 Н 10 + 5O 2 > 4CH 3 COOH + 2Н 2 O (окисление алканов в промышленности; получение уксусной кислоты)

8. н- С 4 Н 10 > изо- С 4 Н 10 (изомеризация, катализатор AlCl 3)

2. Циклоалканы

Циклоалканы (циклопарафины, нафтены, цикланы, полиметилены) – предельные углеводороды с замкнутой (циклической) углеродной цепью. Общая формула С n H 2n .

Атомы углерода в циклоалканах, как и в алканах, находятся в sp 3 -гибридизованном состоянии. Гомологический ряд циклоалканов начинает простейший циклоалкан – циклопропан С 3 Н 6 , представляющий собой плоский трехчленный карбоцикл. По правилам международной номенклатуры в циклоалканах главной считается цепь углеродных атомов, образующих цикл. Название строится по названию этой замкнутой цепи с добавлением приставки «цикло» (циклопропан, циклобутан, циклопентан, циклогексан и т. д.).


Структурная изомерия циклоалканов связана с различной величиной цикла (структуры 1 и 2), строением и видом заместителей (структуры 5 и 6) и их взаимным расположением (структуры 3 и 4).


Способы получения циклоалканов

1. Получение из дигалогенопроизводных углеводородов

2. Получение из ароматичесих углеводородов

Химические свойства циклоалканов

Химические свойства циклоалканов зависят от размера цикла, определяющего его устойчивость. Трех– и четырехчленные циклы (малые циклы), являясь насыщенными, резко отличаются от всех остальных предельных углеводородов. Циклопропан, циклобутан вступают в реакции присоединения. Для циклоалканов (С 5 и выше) вследствие их устойчивости характерны реакции, в которых сохраняется циклическая структура, т. е. реакции замещения.

1. Действие галогенов

2. Действие галогеноводородов

С циклоалканами, содержащими пять и более атомов углерода в цикле, галогеново-дороды не взаимодействуют.


4. Дегидрирование

Алкены (непредельные углеводороды, этиленовые углеводороды, олефины) – непредельные алифатические углеводороды, молекулы которых содержат двойную связь. Общая формула ряда алкенов С n Н 2n .

По систематической номенклатуре названия алкенов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса – ан на – ен : этан (CH 3 -CH 3) – этен (CH 2 =CH 2) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя двойную связь. Нумерацию углеродных атомов начинают с ближнего к двойной связи конца цепи.

В молекуле алкена ненасыщенные атомы углерода находятся в sp 2 -гибридизации, а двойная связь между ними образована?– и?-связью. sp 2 -Гибридные орбитали направлены друг к другу под углом 120°, и одна негибридизованная -орбиталь, расположена под углом 90° к плоскости гибридных атомных орбиталей.

Пространственное строение этилена:


Длина связи С=С 0,134 нм, энергия связи С=С Е с=с = 611 кДж/моль, энергия?-связи Е? = 260 кДж/моль.

Виды изомерии: а) изомерия цепи; б) изомерия положения двойной связи; в) Z, Е (cis, trans ) – изомерия, вид пространственной изомерии.

Способы получения алкенов

1. CH 3 -CH 3 >Ni, t > CH 2 =CH 2 + H 2 (дегидрирование алканов)

2. С 2 Н 5 OH >H,SO 4 , 170 °C> CH 2 =CH 2 + Н 2 O (дегидратация спиртов)

3. (дегидрогалогенирование алкилгалогенидов по правилу Зайцева)


4. CH 2 Cl-CH 2 Cl + Zn > ZnCl 2 + CH 2 =CH 2 (дегалогенирование дигалогенопроизводных)

5. HC?CH + Н 2 >Ni, t > CH 2 =CH 2 (восстановление алкинов)

Химические свойства алкенов

Для алкенов наиболее характерны реакции присоединения, они легко окисляются и полимеризуются.

1. CH 2 =CH 2 + Br 2 > CH 2 Br-CH 2 Br

(присоединение галогенов, качественная реакция)

2. (присоединение галогеноводородов по правилу Марковникова)

3. CH 2 =CH 2 + Н 2 >Ni, t > CH 3 -CH 3 (гидрирование)

4. CH 2 =CH 2 + Н 2 O >H + > CH 3 CH 2 OH (гидратация)

5. ЗCH 2 =CH 2 + 2КMnO 4 + 4Н 2 O > ЗCH 2 OH-CH 2 OH + 2MnO 2 v + 2KOH (мягкое окисление, качественная реакция)

6. CH 2 =CH-CH 2 -CH 3 + КMnO 4 >H + > CO 2 + С 2 Н 5 COOH (жесткое окисление)

7. CH 2 =CH-CH 2 -CH 3 + O 3 > Н 2 С=O + CH 3 CH 2 CH=O формальдегид+пропаналь > (озонолиз)

8. С 2 Н 4 + 3O 2 > 2CO 2 + 2Н 2 O (реакция горения)

9. (полимеризация)

10. CH 3 -CH=CH 2 + HBr >перекись > CH 3 -CH 2 -CH 2 Br (присоединение бро-моводорода против правила Марковникова)

11. (реакция замещения в?-положение)

Алкины (ацетиленовые углеводороды) – ненасыщенные углеводороды, имеющие в своем составе тройную С?С связь. Общая формула алкинов с одной тройной связью С n Н 2n-2 . Простейший представитель ряда алкинов CH?CH имеет тривиальное название ацетилен. По систематической номенклатуре названия ацетиленовых углеводородов производят от названий соответствующих алканов (с тем же числом атомов углерода) путем замены суффикса –ан на -ин : этан (CH 3 -CH 3) – этин (CH?CH) и т. д. Главная цепь выбирается таким образом, чтобы она обязательно включала в себя тройную связь. Нумерацию углеродных атомов начинают с ближнего к тройной связи конца цепи.

В образовании тройной связи участвуют атомы углерода в sp -гибридизованном состоянии. Каждый из них имеет по две sp- гибридных орбитали, направленных друг к другу под углом 180°, и две негибридных p -орбитали, расположенных под углом 90° по отношению друг к другу и к sp -гибридным орбиталям.

Пространственное строение ацетилена:


Виды изомерии: 1) изомерия положения тройной связи; 2) изомерия углеродного скелета; 3) межклассовая изомерия с алкадиенами и циклоалкенами.

Способы получения алкинов

1. СаО + ЗС >t > СаС 2 + CO;

СаС 2 + 2Н 2 O > Са(OH) 2 + CH?CH (получение ацетилена)

2. 2CH 4 >t>1500 °C > HC = CH + ЗН 2 (крекинг углеводородов)

3. CH 3 -CHCl 2 + 2KOH >в спирте > HC?CH + 2KCl + Н 2 O (дегалогенирова-ние)

CH 2 Cl-CH 2 Cl + 2KOH >в спирте > HC?CH + 2KCl + Н 2 O

Химические свойства алкинов

Для алкинов характерны реакции присоединения, замещения. Алкины полиме-ризуются, изомеризуются, вступают в реакции конденсации.

1. (гидрирование)

2. HC?CH + Br 2 > CHBr=CHBr;

CHBr=CHBr + Br 2 > CHBr 2 -CHBr 2 (присоединение галогенов, качественная реакция)

3. CH 3 -С?CH + HBr > CH 3 -CBr=CH 2 ;

CH 3 -CBr=CH 2 + HBr > CH 3 -CBr 2 -CHg (присоединение галогеноводородов по правилу Марковникова)

4. (гидратация алинов, реация Кучерова)



5.(присоединение спиртов)

6.(присоединение карбоновых ислот)

7. CH?CH + 2Ag 2 O >NH 3 > AgC?CAgv + H 2 O (образование ацетиленидов, качественная реакция на концевую тройную связь)

8. CH?CH + [О] >КMnO 4 > HOOC-COOH > HCOOH + CO 2 (окисление)

9. CH?CH + CH?CH > CH 2 =CH-С?CH (катализатор – CuCl и NH 4 Cl, димеризация)

10. 3HC?CH >C, 600 °C > С 6 Н 6 (бензол) (циклоолигомеризация, реакция Зелинского)

5. Диеновые углеводороды

Алкадиены (диены) – непредельные углеводороды, молекулы которых содержат две двойные связи. Общая формула алкадиенов С n Н 2n _ 2 . Свойства алкадиенов в значительной степени зависят от взаимного расположения двойных связей в их молекулах.

Способы получения диенов

1. (метод СВ. Лебедева)


2. (дегидратация)


3. (дегидрирование)


Химические свойства диенов

Для сопряженных диенов характерны реакции присоединения. Сопряженные диены способны присоединять не только по двойным связям (к C 1 и С 2 , С 3 и С 4), но и к концевым (С 1 и С 4) атомам углерода с образованием двойной связи между С 2 и С 3 .



6. Ароматические углеводороды

Арены, или ароматические углеводороды, – циклические соединения, молекулы которых содержат устойчивые циклические группы атомов с замкнутой системой сопряженных связей, объединяемые понятием ароматичности, которая обуславливает общие признаки в строении и химических свойствах.

Все связи С-С в бензоле равноценны, их длина равна 0,140 нм. Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф. Кекуле), а все они выровнены (дел окал изованы).

формула Кекуле

Гомологи бензола – соединения, образованные заменой одного или нескольких атомов водорода в молекуле бензола на углеводородные радикалы (R): С 6 Н 5 -R, R-С 6 Н 4 -R. Общая формула гомологического ряда бензола С n Н 2n _ 6 (n > 6). Для названия ароматических углеводородов широко используются тривиальные названия (толуол, ксилол, кумол и т. п.). Систематические названия строят из названия углеводородного радикала (приставка) и слова «бензол» (корень): С 6 Н 5 -CH 3 (метилбензол), С 6 Н 5 -С 2 Н 5 (этилбензол). Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Для дизамещен-ных бензолов R-С 6 Н 4 -R используется также и другой способ построения названий, при котором положение заместителей указывают перед тривиальным названием соединения приставками: орто– (o -) – заместители соседних атомов углерода кольца (1,2-); мета– (м -) – заместители через один атом углерода (1,3-); пара– (п -) – заместители на противоположных сторонах кольца (1,4-).


Виды изомерии (структурная): 1) положения заместителей для ди-, три– и тетра-замещенных бензолов (например, о-, м- и п -ксилолы); 2) углеродного скелета в боковой цепи, содержащей не менее 3 атомов углерода; 3) заместителей (R), начиная с R=С 2 Н 5 .

Способы получения ароматических углеводородов

1. С 6 Н 12 >Pt, 300 °C > С 6 Н 6 + ЗН 2 (дегидрирование циклоалканов)

2. н- С 6 Н 14 >Cr 2 O 3 , 300 °C > С 6 Н 6 + 4Н 2 (дегидроциклизация алканов)

3. ЗС 2 Н 2 >С, 600 °C > С 6 Н 6 (циклотримеризация ацетилена, реакция Зелинского)

Химические свойства ароматических углеводородов

По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Для аренов наиболее характерны реакции, идущие с сохранением ароматической системы, а именно реакции замещения атомов водорода, связанных с циклом. Другие реакции (присоединение, окисление), в которых участвуют делокали-зованные С-С связи бензольного кольца и нарушается его ароматичность, идут с трудом.

1. C 6 H 6 + Cl 2 >AlCl 3 > C 6 H 5 Cl + HCl (галогенирование)

2. C 6 H 6 + HNO 3 >H 2 SO 4 > C 6 H 5 -NO 2 + H 2 O (нитрование)


3. С 6 Н 6 >H 2 SO 4 > С 6 Н 5 -SO 3 H + H 2 O (сульфирование)

4. С 6 Н 6 + RCl >AlCl 3 > С 6 Н 5 -R + HCl (алкилирование)

5. (ацилирование)


6. С 6 Н 6 + ЗН 2 >t, Ni > С 6 Н 12 циклогексан (присоединение водорода)

7. (1,2,3,4,5,6-гексахлороциклогексан, присоединение хлора)

8. С 6 Н 5 -CH 3 + [О] > С 6 Н 5 -COOH кипячение с раствором КMnO 4 (окисление алкилбензолов)

7. Галогеноуглеводороды

Галогеноуглеводородами называются производные углеводородов, в которых один или несколько атомов водорода заменены на атомы галогена.

Способы получения галогеноуглеводородов

1. CH 2 =CH 2 + HBr > CH 3 -CH 2 Br (гидрогалогенирование ненасыщенных углеводородов)

CH?CH + HCl > CH 2 =CHCl

2. CH 3 CH 2 OH + РCl 5 > CH 3 CH 2 Cl + POCl 3 + HCl (получение из спиртов)

CH 3 CH 2 OH + HCl > CH 3 CH 2 Cl + Н 2 O (в присутствии ZnCl 2 , t°C )

3. а) CH 4 + Cl 2 >hv> CH 3 Cl + HCl (галогенирование углеводородов)


Химические свойства галогеноуглево-дородов

Наибольшее значение для соединений этого класса имеют реакции замещения и отщепления.

1. CH 3 CH 2 Br + NaOH (водн. р-р) > CH 3 CH 2 OH + NaBr (образование спиртов)

2. CH 3 CH 2 Br + NaCN > CH 3 CH 2 CN + NaBr (образование нитрилов)

3. CH 3 CH 2 Br + NH 3 > + Br --HBr - CH 3 CH 2 NH 2 (образование аминов)

4. CH 3 CH 2 Br + NaNO 2 > CH 3 CH 2 NO 2 + NaBr (образование нитросоединений)

5. CH 3 Br + 2Na + CH 3 Br > CH 3 -CH 3 + 2NaBr (реакция Вюрца)

6. CH 3 Br + Mg > CH 3 MgBr (образование магнийорганических соединений, реактив Гриньяра)

7. (дегидрогалогенирование)


Спиртами называются производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных групп (-OH), связанных с насыщенными атомами углерода. Группа -OH (гидроксильная, оксигруппа) является в молекуле спирта функциональной группой. Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы. Нумерация ведется от ближайшего к OH-группе конца цепи.

По числу гидроксильных групп спирты подразделяются на одноатомные (одна группа -OH), многоатомные (две и более групп -OH). Одноатомные спирты: метанол CH 3 OH, этанол С 2 Н 5 OH; двухатомный спирт: этилен-гликоль (этандиол-1,2) HO-CH 2 -CH 2 -OH; трехатомный спирт: глицерин (пропантриол-1,2,3) HO-CH 2 -CH(OH)-CH 2 -OH. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты первичные R-CH 2 -OH, вторичные R 2 CH-OH, третичные R 3 C-OH.

По строению радикалов, связанных с атомом кислорода, спирты подразделяются на предельные, или алканолы (CH 3 CH 2 -OH), непредельные, или алкенолы (CH 2 =CH-CH 2 -OH), ароматические (С 6 Н 5 CH 2 -OH).

Виды изомерии (структурная изомерия): 1) изомерия положения OH-группы (начиная с С 3); 2) углеродного скелета (начиная с С 4); 3) межклассовая изомерия с простыми эфирами (например, этиловый спирт CH 3 CH 2 OH и диметиловый эфир CH 3 -О-CH 3). Следствием полярности связи О-Н и наличия неподеленных пар электронов на атоме кислорода является способность спиртов к образованию водородных связей.

Способы получения спиртов

1. CH 2 =CH 2 + Н 2 O/Н + > CH 3 -CH 2 OH (гидратация алкенов)

2. CH 3 -CHO + Н 2 >t, Ni > С 2 Н 5 OH (восстановление альдегидов и кетонов)

3. C 2 H 5 Br + NaOH (водн.) > С 2 Н 5 OH + NaBr (гидролиз галогенопроизводных)

ClCH 2 -CH 2 Cl + 2NaOH (водн.) > HOCH 2 -CH 2 OH + 2NaCl

4. CO + 2Н 2 >ZnO, CuO, 250 °C, 7 МПа > CH 3 OH (получение метанола, промышленность)

5. С 6 Н 12 O 6 >дрожжи > 2С 2 Н 5 OH + 2CO 2 (брожение моноз)

6. 3CH 2 =CH 2 + 2KMnO 4 + 4Н 2 O > 3CH 2 OH-CH 2 OH - этиленгиликоль + 2KOH + 2MnO 2 (окисление в мягких условиях)

7. а) CH 2 =CH-CH 3 + O 2 > CH 2 =CH-CHO + Н 2 O

б) CH 2 =CH-CHO + Н 2 > CH 2 =CH-CH 2 OH

в) CH 2 =CH-CH 2 OH + Н 2 O 2 > HOCH 2 -CH(OH)-CH 2 OH (получение глицерина)

Химические свойства спиртов

Химические свойства спиртов связаны с наличием в их молекулу группы -OH. Для спиртов характерны два типа реакций: разрыв связи С-О и связи О-Н.

1. 2С 2 Н 5 OH + 2Na > Н 2 + 2C 2 H 5 ONa (образование алкоголятов металлов Na, К, Mg, Al)

2. а) С 2 Н 5 OH + NaOH ? (в водном растворе не идет)

б) CH 2 OH-CH 2 OH + 2NaOH > NaOCH 2 -CH 2 ONa + 2Н 2 O

в) (качественная реакция на многоатомные спирты – образование ярко-синего раствора с гидроксидом меди)


3. а) (образование сложных эфиров)

б) С 2 Н 5 OH + H 2 SO 4 > С 2 Н 5 -О-SO 3 H + Н 2 O (на холоду)


4. а) С 2 Н 5 OH + HBr > С 2 Н 5 Br + Н 2 O

б) С 2 Н 5 OH + РCl 5 > С 2 Н 5 Cl + POCl 3 + HCl

в) С 2 Н 5 OH + SOCl 2 > С 2 Н 5 Cl + SO 2 + HCl (замещение гидроксильной группы на галоген)

5. С 2 Н 5 OH + HOC 2 H 5 >H 2 SO 4 , <140 °C > C 2 H 5 -O-C 2 H 5 + H 2 O (межмолекулярная гидротация)

6. С 2 Н 5 OH >H 2 SO 4 , 170 °C > CH 2 =CH 2 + H 2 O (внутримолекулярная гидротация)

7. а) (дегидрирование, окисление первичных спиртов)


Фенолами называются производные аренов, в которых один или несколько атомов водорода ароматического кольца замещены на гидроксильные группы. По числу гидроксильных групп в ароматическом кольце различают одно– и многоатомные (двух– и трехатомные) фенолы. Для большинства фенолов используются тривиальные названия. Структурная изомерия фенолов связана с различным положением гидроксильных групп.


Способы получения фенолов

1. С 6 Н 5 Cl + NaOH(p, 340°C) > С 6 Н 5 OH + NaCl (щелочной гидролиз галогеноуглеводородов)

2. (кумольный способ получения)


3. C 6 H 5 SO 3 Na + NaOH (300–350°C) > С 6 Н 5 OH + Na 2 SO 3 (щелочное плавление солей ароматических сульфоновых кислот)

Химические свойства фенолов

Фенолы в большинстве реакций по связи О-Н активнее спиртов, поскольку эта связь более полярна за счет смещения электронной плотности от атома кислорода в сторону бензольного кольца (участие непо-деленной электронной пары атома кислорода в системе л-сопряжения). Кислотность фенолов значительно выше, чем спиртов.

Для фенолов реакции разрыва связи С-О не характерны. Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы, но и в большей реакционной способности бензольного ядра.

Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно в орто– и пара- положениях (+М-эффект OH-группы). Для обнаружения фенолов используется качественная реакция с хлоридом железа(III). Одноатомные фенолы дают устойчивое сине-фиолетовое окрашивание, что связано с образованием комплексных соединений железа.

1. 2С 6 Н 5 OH + 2Na > 2C 6 H 5 ONa + Н 2 (так же, как и этанол)

2. С 6 Н 5 OH + NaOH > C 6 H 5 ONa + H 2 O (в отличие от этанола)

C 6 H 5 ONa + Н 2 O + CO 2 > С 6 Н 5 OH + NaHCO 3 (фенол более слабая кислота, чем угольная)


Фенолы не образуют сложные эфиры в реакциях с кислотами. Для этого используются более реакционноспособные производные кислот (ангидриды, хлорангидриды).

4. С 6 Н 5 OH + CH 3 CH 2 OH >NaOH > С 6 Н 5 OCH 2 CH 3 + NaBr (О-алкилирование)

(взаимодействие с бромной водой, качественная реакция)

6.(нитрование разб. HNO 3 , при нитрировании конц. HNO 3 образуется 2,4,6-тринитрофенол)


7. n C 6 H 5 OH + n CH 2 O > n H 2 O + (-C 6 H 3 OH-CH 2 -) n (поликонденсация, получение фенолформальдегидных смол)

10. Альдегиды и кетоны

Альдегидами называются соединения, в которых карбонильная группа

соединена с углеводородным радикалом и атомом водорода, а кетонами – карбонильные соединения с двумя углеводородными радикалами.

Систематические названия альдегидов строят по названию соответствующего углеводорода с добавлением суффикса –аль . Нумерацию цепи начинают с карбонильного атома углерода. Тривиальные названия производят от тривиальных названий тех кислот, в которые альдегиды превращаются при окислении: Н 2 С=O – метаналь (муравьиный альдегид, формальдегид); CH 3 CH=O – этаналь (уксусный альдегид). Систематические названия кетонов несложного строения производят от названий радикалов с добавлением слова «кетон». В более общем случае название кетона строится по названию соответствующего углеводорода и суффикса –он ; нумерацию цепи начинают от конца цепи, ближайшего к карбонильной группе. Примеры: CH 3 -CO-CH 3 – диметилкетон (пропанон, ацетон). Для альдегидов и кетонов характерна структурная изомерия. Изомерия альдегидов: а) изомерия углеродного скелета, начиная с С 4 ; б) межклассовая изомерия. Изомерия кетонов: а) углеродного скелета (с С 5); б) положения карбонильной группы (с С 5); в) межклассовая изомерия.

Атомы углерода и кислорода в карбонильной группе находятся в состоянии sp 2 - гибридизации. Связь С=O сильно полярна. Электроны кратной связи С=O смещены к электроотрицательному атому кислорода, что приводит к появлению на нем частичного отрицательного заряда, а карбонильный атом углерода приобретает частичный положительный заряд.

Способы получения альдегидов и кетонов

1. а) (дегидрирование, окисление первичных спиртов)

б) (дегидрирование, окисление вторичных спиртов)



2. а) CH 3 CH 2 CHCl 2 + 2NaOH >в воде > CH 3 CH 2 CHO + 2NaCl + H 2 O (гидролиз дигалогенопроизводных)

б) CH 3 СCl 2 CH 3 + 2NaOH >в воде > CH 3 COCH 3 + 2NaCl + H 2 O

3. (гидратация алкинов, реакция Кучерова)



4. (окисление этилена до этаналя)

(окисление метана до формальдегида)

CH 4 + O 2 >400–600 °C, NO > H 2 C=O + H 2 O

Химические свойства альдегидов и ке-тонов

Для карбонильных соединений характерны реакции различных типов: а) присоединение по карбонильной группе; б) восстановление и окисление; в) конденсация; д) полимеризация.

1. (присоединение циановодородной кислоты, образование гидроксинитрилов)

2. (присоединение гидросулбфита натрия)

3. (восстановление)


4. (образование полуацеталец и ацеталей)


5. (взаимодействие с гидроксоламином, образование оксима ацетальдегида)

6. (образование дигалогенопроизводных)


7. (?-галогенирование в присутствии OH?)

8. (албдольная конденсация)


9. R-CH=O + Ag 2 O >NH 3 > R-COOH + 2Agv (окисление, реакция «серебряного зеркала»)

R-CH=O + 2Cu(OH) 2 > R-COOH + Cu 2 Ov, + 2H 2 O (красный осадок, окисление)

10. (окисление кетонов, жесткие условия)


11. n CH 2 =O > (-CH2-O-) n параформ n = 8-12 (полимеризация)

11. Карбоновые кислоты и их производные

Карбоновыми кислотами называются органические соединения, содержащие одну или несколько карбоксильных групп -COOH, связанных с углеводородным радикалом. По числу карбоксильных групп кислоты подразделяются на: одноосновные (монокарбоновые) CH 3 COOH (уксусная), многоосновные (дикарбоновые, трикарбоновые и т. д.). По характеру углеводородного радикала различают кислоты: предельные (например, CH 3 CH 2 CH 2 COOH); непредельные (CH 2 =CH(-COOH); ароматические (С 6 Н 5 COOH).

Систематические названия кислот даются по названию соответствующего углеводорода с добавлением суффикса –овая и слова «кислота»: HCOOH – метановая (муравьиная) кислота, CH 3 COOH – этановая (уксусная) кислота. Для карбоновых кислот характерная структурная изомерия: а) изомерия скелета в углеводородном радикале (начиная с С 4); б) межклассовая изомерия, начиная с С 2 . Возможна цис-транс-изомерия в случае непредельных карбоновых кислот. Электронная плотность?- связи в карбонильной группе смещена в сторону атома кислорода. Вследствие этого у карбонильного углерода создается недостаток электронной плотности, и он притягивает к себе неподеленные пары атома кислорода гидроксильной группы, в результате чего электронная плотность связи О-Н смещается в сторону атома кислорода, водород становится подвижным и приобретает способность отщепляться в виде протона.

В водном растворе карбоновые кислоты диссоциируют на ионы:

R-COOH - R-COО? + Н +

Растворимость в воде и высокие температуры кипения кислот обусловлены образованием межмолекулярных водородных связей.

Способы получения карбоновых кислот

1. CH 3 -СCl 3 + 3NaOH > CH 3 -COOH + 3NaCl + Н 2 O (гидролиз тригалогенопроизводных)

2. R-CHO + [О] > R-COOH (окисление альдегидов и кетонов)

3. CH 3 -CH=CH 2 + CO + Н 2 O/Н + >Ni, р, t > CH 3 -CH 2 -CH 2 -COOH (оксосинтез)

4. CH 3 C?N + 2Н 2 O/ Н + > CH 3 COOH + NH 4 (гидролиз нитрилов)

5. CO + NaOH > HCOONa; 2HCOONa + H 2 SO 4 > 2HCOOH + Na 2 SO 4 (получение HCOOH)

Химические свойства карбоновых кислот и их производных

Карбоновые кислоты проявляют высокую реакционную способность и вступают в реакции с различными веществами, образуя разнообразные соединения, среди которых большое значение имеют функциональные производные: сложные эфиры, амиды, нитрилы, соли, ангидриды, гало-генангидриды.

1. а) 2CH 3 COOH + Fe > (CH 3 COO) 2 Fe + Н 2 (образование солей)

б) 2CH 3 COOH + MgO > (CH 3 COO) 2 Mg + Н 2 O

в) CH 3 COOH + KOH > CH 3 COОК + Н 2 O

г) CH 3 COOH + NaHCO 3 > CH 3 COONa + CO 2 + Н 2 O

CH 3 COONa + H 2 O - CH 3 COOH + NaOH (соли карбоновых кислот гидролизуются)

2. (образование вложных эфиров)

(омыление вложного эфира)

3. (получение хлорангидридов кислот)


4. (разложение водой)

5. CH 3 -COOH + Cl 2 >hv > Cl-CH 2 -COOH + HCl (галогенирование в?-положение)

6. HO-CH=O + Ag 2 O >NH 3 > 2Ag + Н 2 CO 3 (Н 2 O + CO 2) (особенности HCOOH)

HCOOH >t > CO + Н 2 O

Жиры – сложные эфиры глицерина и высших одноатомных карбоновых кислот. Общее название таких соединений – триглицериды. В состав природных триглицеридов входят остатки насыщенных кислот (пальмитиновой С 15 Н 31 COOH, стеариновой С 17 Н 35 COOH) и ненасыщенных (олеиновой С 17 Н 33 COOH, линолевой С 17 Н 31 COOH). Жиры состоят главным образом из триглицеридов предельных кислот. Растительные жиры – масла (подсолнечное, соевое) – жидкости. В состав триглицеридов масел входят остатки непредельных кислот.

Жирам как сложным эфирам свойственна обратимая реакция гидролиза, катализируемая минеральными кислотами. При участии щелочей гидролиз жиров происходит необратимо. Продуктами в этом случае являются мыла – соли высших карбоновых кислот и щелочных металлов. Натриевые соли – твердые мыла, калиевые – жидкие. Реакция щелочного гидролиза жиров называется также омылением.


Амины – органические производные аммиака, в молекуле которого один, два или три атома водорода замещены на углеводородные радикалы. В зависимости от числа углеводородных радикалов различают первичные RNH 2 , вторичные R 2 NH, третичные R 3 N амины. По характеру углеводородного радикала амины подразделяются на алифатические (жирные), ароматические и смешанные (или жирноароматические). Названия аминов в большинстве случаев образуют из названий углеводородных радикалов и суффикса –амин. Например, CH 3 NH 2 – метиламин; CH 3 -CH 2 -NH 2 – этиламин. Если амин содержит различные радикалы, то их перечисляют в алфавитном порядке: CH 3 -CH 2 -NH-CH 3 – ме-тилэтиламин.

Изомерия аминов определяется количеством и строением радикалов, а также положением аминогруппы. Связь N-Н является полярной, поэтому первичные и вторичные амины образуют межмолекулярные водородные связи. Третичные амины не образуют ассоциирующих водородных связей. Амины способны к образованию водородных связей с водой. Поэтому низшие амины хорошо растворимы в воде. С увеличением числа и размеров углеводородных радикалов растворимость аминов в воде уменьшается.

Способы получения аминов

1. R-NO 2 + 6[Н] > R-NH 2 + 2H 2 O (восстановление нитросоединений)

2. NH 3 + CH 3 I > I? >NH 3 > CH 3 NH 2 + NH 4 I (алкилирование аммиака)

3. а) С 6 Н 5 -NO 2 + 3(NH 4) 2 S > С 6 Н 5 -NH 2 + 3S + 6NH 3 + 2H 2 O (реакция Зинина)

б) С 6 Н 5 -NO 2 + 3Fe + 6HCl > С 6 Н 5 -NH 2 + 3FeCl 2 + 2Н 2 O (восстановление нитросоединений)

в) С 6 Н 5 -NO 2 + ЗН 2 >катализатор, t > C 6 H 5 -NH 2 + 2Н 2 O

4. R-C?N + 4[H] > RCH 2 NH 2 (восстановление нитрилов)

5. ROH + NH 3 >Al 2 O 3 ,350 °C > RNH 2 + 2H 2 O (получение низших алкиламинов С 2 -С 4)

Химические свойства аминов

Амины имеют сходное с аммиаком строение и проявляют подобные ему свойства. Как в аммиаке, так и в аминах атом азота имеет неподеленную пару электронов. Для аминов характерны ярко выраженные основные свойства. Водные растворы алифатических аминов проявляют щелочную реакцию. Алифатические амины – более сильные основания, чем аммиак. Ароматические амины являются более слабыми основаниями, чем аммиак, поскольку не-поделенная электронная пара атома азота смещается в сторону бензольного кольца, вступая в сопряжение с его?-электронами.

На основность аминов влияют различные факторы: электронные эффекты углеводородных радикалов, пространственное экранирование радикалами атома азота, а также способность образующихся ионов к стабилизации за счет сольватации в среде растворителя. В результате донорного эффекта алкильных групп основность алифатических аминов в газовой фазе (без растворителя) растет в ряду: первичные < вторичные < третичные. Основность ароматических аминов зависит также от характера заместителей в бензольном кольце. Электроноакцепторные заместители (-F, -Cl, -NO 2 и т. п.) уменьшают основные свойства ариламина по сравнению с анилином, а электронодонорные (алкил R-, -OCH 3 , -N(CH 3) 2 и др.), напротив, увеличивают.

1. CH 3 -NH 2 + Н 2 O > OH (взаимодействие с водой)

2. (CH 3) 2 NH + HCl > [(CH 3) 2 NH 2 ]Cl хлорид диметиламмония (взаимодействие с кислотами)

[(CH 3) 2 NH 2 ]Cl + NaOH > (CH 3) 2 NH + NaCl + H 2 O (взаимодействие солей аминов со щелочами)

(ацителирование, с третичными аминами не идет)

4. R-NH 2 + CH 3 I > I? >NH 3 > CH 3 NHR + NH 4 I (алкилирование)

5. Взаимодействие с азотистой кислотой: строение продуктов реакции с азотистой кислотой зависит от характера амина. Поэтому данная реакция используется для различия первичных, вторичных и третичных аминов.

а) R-NH 2 + HNO 2 > R-OH + N 2 + H 2 O (первичные жирные амины)

б) С 6 Н 5 -NH 2 + NaNO 2 + HCl > [С 6 Н 5 -N?N] + Cl? – соль диазония (первичные ароматические амины)

в) R 2 NH + Н-О-N=O > R 2 N-N=O (N-нитрозамин) + Н 2 O (вторичные жирные и ароматические амины)

г) R 3 N + Н-О-N=O > при низкой температуре нет реакции (третичные жирные амины)


(третичные ароматические амины)

Свойства анилина. Для анилина характерны реакции как по аминогруппе, так и по бензольному кольцу. Бензольное кольцо ослабляет основные свойства аминогруппы по сравнению с алифатическими аминами и аммиаком, но под влиянием аминогруппы бензольное кольцо становится более активным в реакциях замещения по сравнению с бензолом.

C 6 H 5 -NH 2 + HCl > Cl = C 6 H 5 NH 2 HCl

C 6 H 5 NH 2 HCl + NaOH > C 6 H 5 NH 2 + NaCl + H 2 O

C 6 H 5 NH 2 + CH3I >t > + I?


14. Аминокислоты

Аминокислотами называются гетеро-функциональные соединения, молекулы которых содержат одновременно аминогруппу и карбоксильную группу. В зависимости от взаимного расположения амино– и карбоксильной групп аминокислоты подразделяют на?-, ?-, ?– и т. д. По ИЮПАК, для наименования аминокислот группу NH 2 - называют приставкой амино-, указывая цифрой номер углеродного атома, с которым она связана, а затем следует название соответствующей кислоты.

2-аминопропановая кислота (?-аминопропановая, ?-аланин) 3-аминопропановая кислота (?-аминопропановая, ?-аланин) 6-аминогексановая кислота (?-аминокапроновая)

По характеру углеводородного радикала различают алифатические (жирные) и ароматические аминокислоты. Изомерия аминокислот зависит от строения углеродного скелета, положения аминогруппы по отношению к карбоксильной группе. Для аминокислот характерна еще оптическая изомерия.

Способы получения аминокислот

1. (аммонолиз галогенокислот)

2. CH 2 =CH-COOH + NH 3 > H 2 N-CH 2 -CH 2 -COOH (присоединение аммиака к?, ?-непредельным кислотам)


(действие HCN и NH 3 на альдегиды или кетоны)

4. Гидролиз белков под влиянием ферментов, кислот или щелочей.

5. Микробиологический синтез.

Химические свойства аминокислот

Аминокислоты проявляют свойства оснований за счет аминогруппы и свойства кислот за счет карбоксильной группы, т. е. являются амфотерными соединениями. В кристаллическом состоянии и в среде, близкой к нейтральной, аминокислоты существуют в виде внутренней соли – дипо-лярного иона, называемого также цвиттер-ион H 3 N + -CH 2 -COO?.

1. H 2 N-CH 2 -COOH + HCl > Cl? (образование солей по аминогруппе)

2. H 2 N-CH 2 -COOH + NaOH > H 2 N-CH 2 -COO?Na + + H 2 O (образование солей)


(образование сложного эфира)


(ацилирование)

5. + NH 3 -CH 2 -COO? + 3CH 3 I >-HI > (CH 3) 3 N + -CH 2 -COO? – бетаин аминоуксусной кислоты

(алкилирование)

(взаимодействие с азотистой кислотой)

7. n H 2 N-(CH 2) 5 -COOH > (-HN-(CH 2) 5 -CO-) n + n H 2 O (получение капрона)

15. Углеводы. Моносахариды. Олигосахариды. Полисахариды

Углеводы (сахара) – органические соединения, имеющие сходное строение и свойства, состав большинства которых отражает формула С х (Н 2 O) y , где х, у ? 3.

Классификация:


Моносахариды не гидролизуются с образованием более простых углеводов. Олиго-и полисахариды расщепляются при кислом гидролизе до моносахаридов. Общеизвестные представители: глюкоза (виноградный сахар) С 6 Н 12 O 6 , сахароза (тростниковый, свекловичный сахар) С 12 Н 22 О 11 , крахмал и целлюлоза [С 6 Н 10 О 5 ] n .

Способы получения

1. mCO 2 + nН 2 O >hv, хлорофилл > C m (H 2 O) n (углеводы)+ mO 2 (получение при фотосинтезе)

углеводы: С 6 Н 12 O 6 + 6O 2 > 6CO 2 + 6Н 2 O + 2920 кДж

(метаболизм: глюкоза окисляется с выделением большого количества энергии в живом организме в процессе метаболизма)

2. 6nCO 2 + 5nН 2 O >hv, хлорофилл > (С 6 Н 10 О 5) n + 6nO 2 (получение крахмала или целлюлозы)

Химические свойства

Моносахриды. Все монозы в кристаллическом состоянии имеют циклическое строение (?– или?-). При растворении в воде циклический полуацеталь разрушается, превращаясь в линейную (оксо-) форму.

Химические свойства моносахаридов обусловлены наличием в молекуле функциональных групп трех видов (карбонила, спиртовых гидроксилов и гликозидного (полуацетального) гидроксила).

1. С 5 Н 11 O 5 -CHO (глюкоза) + Ag 2 O >NH 3 > CH 2 OH-(CHOH) 4 -COOH (глюконовая кислота) + 2Ag (окисление)

2. С 5 Н 11 O 5 -CHO (глюкоза) + [Н] > CH 2 OH-(CHOH) 4 -CH 2 OH(сорбит)(восстановление)


(моноалкилирование)

(полиалкилирование)


5. Важнейшим свойством моносахаридов является их ферментативное брожение, т. е. распад молекул на осколки под действием различных ферментов. Брожению подвергаются в основном гексозы в присутствии ферментов, выделяемых дрожжевыми грибками, бактериями или плесневыми грибками. В зависимости от природы действующего фермента различают реакции следующих видов:

а) С 6 Н 12 O 6 > 2С 2 Н 5 OH + 2CO 2 (спиртовое брожение);

б) С 6 Н 12 O 6 > 2CH 3 -CH(OH)-COOH (молочнокислое брожение);

в) С 6 Н 12 O 6 > С 3 Н 7 COOH + 2CO 2 + 2Н 2 O (маслянокислое брожение);

г) С 6 Н 12 O 6 + O 2 > HOOC-CH 2 -С(OH)(COOH)-CH 2 -COOH + 2Н 2 O (лимоннокислое брожение);

д) 2С 6 Н 12 O 6 > С 4 Н 9 OH + CH 3 -CO-CH 3 + 5CO 2 + 4Н 2 (ацетон-бутанольное брожение).

Дисахариды. Дисахариды – углеводы, молекулы которых состоят из двух остатков моносахаридов, соединенных друг с другом за счет взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). Отсутствие или наличие гликозидного (полуацетального) гидроксила отражается на свойствах дисахаридов. Биозы делятся на две группы: восстанавливающие и невосстанавливающие. Восстанавливающие биозы способны проявлять свойства восстановителей и при взаимодействии с аммиачным раствором серебра окисляться до соответствующих кислот, содержат в своей структуре гликозидный гидроксил, связь между монозами – гликозид-гликозная. Схема образования восстанавливающих биоз на примере мальтозы:

Для дисахаридов характерна реакция гидролиза, в результате которой образуются две молекулы моносахаридов:


Примером наиболее распространенных в природе дисахаридов является сахароза (свекловичный или тростниковый сахар). Молекула сахарозы состоит из остатков?-D-глюкопиранозы и?-D-фруктофуранозы, соединенных друг с другом за счет взаимодействия полуацетальных (гликозидных) гидроксилов. Биозы этого типа не проявляют восстанавливающих свойств, так как не содержат в своей структуре гликозидного гидроксила, связь между монозами – гликозид-гликозидная. Подобные дисахариды называют невосстанавливающими, т. е. не способными окисляться.

Схема образования сахарозы:


Инверсия сахарозы. При кислом гидролизе (+)сахарозы или при действии инвертазы образуются равные количества D(+)глюкозы и D(-)фруктозы. Гидролиз сопровождается изменением знака удельного угла вращения [?] с положительного на отрицательный, поэтому процесс называют инверсией, а смесь D(+)глюкозы и D(-)фруктозы – инвертным сахаром.


Полисахариды (полиозы). Полисахариды – природные высокомолекулярные углеводы, макромолекулы которых состоят из остатков моносахаридов. Основные представители: крахмал и целлюлоза, которые построены из остатков одного моносахарида – D-глюкозы. Крахмал и целлюлоза имеют одинаковую молекулярную формулу: (С 6 Н 10 О 5) n , но различные свойства. Это объясняется особенностями их пространственного строения. Крахмал состоит из остатков?-D-глюкозы, а целлюлоза – из?-D-глюкозы. Крахмал – резервный полисахарид растений, накапливается в виде зерен в клетках семян, луковиц, листьев, стеблей, представляет собой белое аморфное вещество, нерастворимое в холодной воде. Крахмал – смесь амилозы и амилопектина, которые построены из остатков?-D-глюкопиранозы.

Амилоза – линейный полисахарид, связь между остатками D-глюкозы 1?-4. Форма цепи – спиралевидная, один виток спирали содержит 6 остатков D-глюкозы. Содержание амилозы в крахмале – 15–25 %.

амилоза
амилопектин

Амилопектин – разветвленный полисахарид, связи между остатками D-глюкозы – 1?-4 и 1?-6. Содержание амилопектина в крахмале 75–85 %.

1. Образование простых и сложных эфиров (аналогично биозам).

2. Качественная реакция – окрашивание при добавлении иода: для амилозы – в синий цвет, для амилопектина – в красный цвет.

3. Кислый гидролиз крахмала: крахмал > декстрины > мальтоза > ?-D-глюкоза.

Целлюлоза. Структурный полисахарид растений, построен из остатков?-D-глюкопиранозы, характер соединения 1?-4. Содержание целлюлозы, например, в хлопчатнике – 90–99 %, в лиственных породах – 40–50 %. Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенки растительных клеток.

Характеристика химических свойств

1. Кислый гидролиз (осахаривание): целлюлоза > целлобиоза > ?-D-глюкоза.

2. Образование сложных эфиров

Из растворов ацетата целлюлозы в ацетоне изготавливают ацетатное волокно.

Нитроцеллюлоза взрывоопасна, составляет основу бездымного пороха. Пироксилин – смесь ди– и тринитратов целлюлозы – используют для изготовления целлулоида, коллодия, фотопленок, лаков.